Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Chemphyschem ; 25(12): e202400298, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38637291

ABSTRACT

The influence of the hydroxymethyl (CH2OH) group on the tetrahydrofuran (THF) ring structure was investigated by disentangling the gas phase conformational landscape of the sugar analogue tetrahydrofurfuryl alcohol (THFA). By combining rotational spectroscopy (6-20 GHz) and quantum chemical calculations, transitions corresponding to two stable conformers of THFA and their 13C isotopologues were observed and assigned in the rotational spectrum. The positions of the C atoms were precisely determined to unambiguously distinguish between nearly isoenergetic pairs of conformers that differ in their ring configurations: envelope (E) versus twist (T). The rotational spectrum confirms that the E ring geometry is favoured when the CH2OH fragment lies gauche (-) to the THF backbone (OCCO ~-60°) whereas the T form is more stable for the gauche (+) alignment of the substituent (OCCO ~+60°). The observed spectral intensities suggest that conformational relaxation of the THF geometry (E↔T) to the more stable form readily occurs within the pairs of g- and g+ conformers which is consistent with the low barriers (1.5-1.7 kJ mol-1) for conversion determined via transition state calculations. Insights into the intramolecular hydrogen bonding and other weak interactions stabilizing the lowest energy structures of THFA were derived and rationalized using non-covalent interaction analyses.

2.
J Chem Phys ; 160(7)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38364002

ABSTRACT

The rotational spectrum of the molecular ion HCNH+ is revisited using double-resonance spectroscopy in an ion trap apparatus, with six transitions measured between 74 and 445 GHz. Due to the cryogenic temperature of the trap, the hyperfine splittings caused by the 14N quadrupolar nucleus were resolved for transitions up to J = 4 ← 3, allowing for a refinement of the spectroscopic parameters previously reported, especially the quadrupole coupling constant eQq.

3.
J Chem Phys ; 160(4)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38258923

ABSTRACT

The conformational spaces of the diallyl ether (DAE) and diallyl sulfide (DAS) monohydrates were explored using rotational spectroscopy from 6 to 19 GHz. Calculations at the B3LYP-D3(BJ)/aug-cc-pVTZ level suggested significant differences in their conformational behavior, with DAE-w exhibiting 22 unique conformers and DAS-w featuring three stable structures within 6 kJ mol-1. However, only transitions from the lowest energy conformer of each were experimentally observed. Spectral analysis confirmed that binding with water does not alter the conformational preference for the lowest energy structure of the monomers, but it does influence the relative stabilities of all other conformers, particularly in the case of DAE. Non-covalent interaction and quantum theory of atoms in molecules analyses showed that the observed conformer for each complex is stabilized by two intermolecular hydrogen bonds (HBs), where water primarily interacts with the central oxygen or sulfur atom of the diallyl compounds, along with secondary interactions involving the allyl groups. The nature of these interactions was further elucidated using symmetry-adapted perturbation theory, which suggests that the primary HB interaction with S in DAS is weaker and more dispersive in nature compared to the primary HB in DAE. This supports the experimental observation of a tunneling splitting exclusively in the rotational spectrum of DAS-w, as the weaker contact allows water to undergo internal motions within the complex, as shown based on calculated transition state structures for possible tunneling pathways.

4.
PLoS Negl Trop Dis ; 17(10): e0011708, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37856557

ABSTRACT

Snakebite envenoming represents an important Neglected Tropical Disease (NTD) that mainly affects tropical and subtropical developing countries according to the World Health Organization (WHO). As a priority issue in the tropics, it is estimated that accidental encounter between snakes and humans is the leading cause of morbidity and mortality among all NTDs in the world. In Brazil, an extremely diverse country with continental dimensions, snakebite envenoming is the second leading cause of reported human envenoming. Treating the disease has been an unprecedented challenge for Brazilian Health Systems for decades. Despite access to Antivenom therapy and distributing it free of charge across the country, Brazil faces numerous issues regarding the notification process and accurate treatment targeting for at-risk populations. Thus, this study aimed to identify the temporal epidemiological dynamics of accidents caused by Bothrops snakes in Brazil, the country's major group of venomous snakes, based on secondary information from the online database provided by The Brazilian Notifiable Diseases Information System (SINAN). For this purpose, reported Bothrops snakebites between 2012 and 2021 were counted, then the data were analyzed. We looked at the frequency, occurrence, mortality rates, case fatality rate (CFR), age and gender distribution, and the time lapse between the incident and the initiation of Antivenom therapy. The data were also organized considering regional variations of the country. Throughout the studied period, a total of 202,604 cases of envenoming caused by Bothrops spp. were notified, resulting in 766 fatalities. These accidents were found to occur in variable proportions across different regions in Brazil, with notable concentrations observed in the North, Northeast, and Southeast regions. The epidemiological profile of patients varied greatly between the regions, revealing that snake envenoming is much more a social, economic, and ecological problem than a medical one. In conclusion, our study provides an overview of the clinical and epidemiological profile of envenoming by Bothrops snakes in Brazil. Notably, this is the first study to present such information in a country as vast and diverse as Brazil, encompassing a comparative analysis of its regions using SINAN data, that proves to be a very useful national tool to improve the control and management of envenoming.


Subject(s)
Bothrops , Snake Bites , Animals , Humans , Antivenins/therapeutic use , Brazil/epidemiology , Snake Bites/therapy , Snake Venoms , Snakes , World Health Organization
5.
Trop Anim Health Prod ; 55(4): 266, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37438616

ABSTRACT

The objective of this research is to apply exploratory analysis and modeling associated with abiotic factors, physiological and behavioral variables of swine in the semi-arid region. The experimental design used was completely randomized, in a 3 × 3 factorial scheme, randomly distributed in nine pens, with three animals. The behavior of the animals was recorded using images and analyzed within 10-min interval. The data analysis used was multivariate, using the clustering method (tree diagram) and principal component analysis (PCA), in order to establish the main predictors of swine ingestive behavior, using multiple linear regression models. The PCA showed satisfactory results, in which the lowest eigenvalue observed was 2.82 and the accumulated variance for the treatments ranged from 69.70 to 94% for the first two principal components. Through exploratory data analysis, it was possible to identify the relationship between biotic and abiotic factors with the ingestive behavior of pigs in the finishing phase. Based on the results of the multivariate analysis, the most promising predictor variables for estimating the regression models were determined. Adiabatic evaporative cooling associated with 18 h of light was the combination of factors with the best results, presenting models for eating and drinking behavior, i.e. a complete ingestive characterization.


Subject(s)
Drinking Behavior , Feeding Behavior , Animals , Swine , Cluster Analysis , Cold Temperature , Data Analysis
6.
Faraday Discuss ; 245(0): 298-308, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37313855

ABSTRACT

Applying a novel action spectroscopic technique in a 4 K cryogenic ion-trap instrument, the molecule c-C3H2D+ has been investigated by high-resolution rovibrational and pure rotational spectroscopy for the first time. In total, 126 rovibrational transitions within the fundamental band of the ν1 symmetric C-H stretch were measured with a band origin centred at 3168.565 cm-1, which were used to predict pure rotational transition frequencies in the ground vibrational state. Based on these predictions, 16 rotational transitions were observed between 90 and 230 GHz by using a double-resonance scheme. These new measurements will enable the first radio-astronomical search for c-C3H2D+.

7.
J Proteomics ; 269: 104742, 2022 10 30.
Article in English | MEDLINE | ID: mdl-36174952

ABSTRACT

Snakes of the genus Bothrops are responsible the most snakebites in the Brazil, causing a diverse and complex pathophysiological condition. Bothrops erythromelas is the main specie of medical relevance found in the Caatinga from the Brazilian Northeast region. The pathophysiological effects involving B. erythromelas snakebite as well as the organism reaction in response to this envenomation are not so explored. Thus, edema was induced in mice paws using 2.5 µg or 5.0 µg of B. erythromelas venom, and the percentage of edema was measured. Plasma was collected 30  minutes after the envenomation-induced in mice and analyzed by mass spectrometry. It was identified a total of 112 common plasma proteins differentially abundant among experimental groups, which are involved with the complement system and coagulation cascades, oxidative stress, neutrophil degranulation, platelets degranulation and inflammatory response. Apolipoprotein A1 (Apoa), serum amyloid protein A-4 (Saa4), adiponectin (Adipoq) showed up-regulated in mice plasma after injection of venom, while fibulin (Fbln1), factor XII (F12) and vitamin K-dependent protein Z (Proz) showed down-regulated. The results indicate a protein pattern of thrombo-inflammation to the B. erythromelas snakebite, evidencing potential biomarkers for monitoring this snakebite, new therapeutic targets and its correlations with the degree of envenomation once showed modulations in the abundance among the different groups according to the amount of venom injected into the mice.


Subject(s)
Bothrops , Crotalid Venoms , Snake Bites , Adiponectin , Animals , Apolipoprotein A-I , Bothrops/metabolism , Crotalid Venoms/metabolism , Edema , Factor XII , Mice , Plasma/chemistry , Proteome/analysis , Serum Amyloid A Protein , Snake Venoms , Vitamin K
8.
Physiol Behav ; 257: 113966, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36150475

ABSTRACT

Physical inactivity has been suggested to impair physical performance, cognitive functions and facilitate weight gain. One hypothesis is that long periods of physical inactivity could impair oxygen delivery to the prefrontal cortex (PFC), impairing one's cognitive ability to inhibit unhealthy automated behaviors and, therefore, reduce exercise tolerance. The present study sought to further understand the relationship among PFC hemodynamics, inhibitory control, and exercise tolerance in individuals with low physical fitness levels who are overweight or obese. Thirty-four participants were asked to perform a series of inhibitory control tests (i.e., Stroop task) in one testing session and complete an incremental cycling exercise test with hemodynamic fluctuations of the PFC measured with functional near-infrared spectroscopy in another session. Our results indicate that exercise performance varied with PFC oxygenation. We also found that inhibitory control played a key role mediating the relationship between PFC oxygenation and exercise performance, suggesting that the cognitive ability to inhibit automated responses has an impact on exercise behavior in adults with overweight and obesity.


Subject(s)
Exercise , Overweight , Adult , Humans , Exercise/physiology , Prefrontal Cortex/physiology , Hemodynamics/physiology , Obesity , Oxygen Consumption/physiology
9.
Phys Chem Chem Phys ; 24(1): 240-248, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34881756

ABSTRACT

The conformational landscapes of diallyl ether (DAE) and diallyl sulfide (DAS) were investigated for the first time using rotational spectroscopy from 6-20 GHz supported by quantum mechanical calculations. A significant difference in the conformational distribution of these chalcogen-bridged compounds is predicted by theory at the B3LYP-D3(BJ)/aug-cc-pVTZ level as DAS has only one low energy conformer while DAE has up to 12 energy minima within 5 kJ mol-1. This was confirmed by rotational spectroscopy as only transitions corresponding to the global minimum of DAS were observed while the spectrum of DAE was much richer and composed of features from the nine lowest energy conformers. To understand the effects that govern the conformational preferences of DAE and DAS, natural bond orbital and non-covalent interaction analyses were done. These show that unique orbital interactions stabilize several conformers of the ether making its conformational landscape more competitive than that of the sulfide. This is consistent with a bonding model involving decreased hybridization of the bridging atom as one moves down the periodic table which is confirmed by the experimental ground state structures of the lowest energy forms of DAE and DAS, derived using spectra of the 13C and 34S substituted species in natural abundance.

10.
J Chem Phys ; 155(3): 034305, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34293887

ABSTRACT

The intermolecular interactions responsible for the microsolvation of the highly flexible trimethylene oxide (TMO) and trimethylene sulfide (TMS) rings with one and two water (w) molecules were investigated using rotational spectroscopy (8-22 GHz) and quantum chemical calculations. The observed patterns of transitions are consistent with the most stable geometries of the TMO-w, TMO-(w)2, and TMS-w complexes at the B2PLYP-D3(BJ)/aug-cc-pVTZ level and were confirmed using spectra of the 18O isotopologue. Due to its effectively planar backbone, TMO offers one unique binding site for solvation, while water can bind to the puckered TMS ring in either an axial or equatorial site of the heteroatom. In all clusters, the first water molecule binds in the σv symmetry plane of the ring monomer and serves as a hydrogen bond donor to the heteroatom. The second water molecule is predicted to form a cooperative hydrogen bonding network between the three moieties. Secondary C-H⋯O interactions are a key stabilizing influence in trimers and also drive the preferred binding site in the TMS clusters with the axial binding site preferred in TMS-w and the equatorial form calculated to be more stable in the dihydrate. Using an energy partition scheme from the symmetry-adapted perturbation theory for the O, S, and Se containing mono- and dihydrates, the intermolecular interactions are revealed to be mainly electrostatic, but the dispersive character of the contacts is enhanced with the increasing size of the ring's heteroatom due to the key role of longer-range secondary interactions.

11.
J Chem Phys ; 154(16): 164303, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33940826

ABSTRACT

The conformational space of diallylamine (DAA) was investigated using rotational spectroscopy from 7 to 19 GHz aided by quantum chemical calculations. Extensive conformational searches using density functional theory B3LYP-D3(BJ) and the ab initio MP2 method with the aug-cc-pVTZ basis set identified a total of 42 minima for DAA within ∼22 kJ mol-1. This reveals a strikingly rich conformational landscape for this secondary amine with two equivalent substituents. Experimentally, transitions belonging to four low energy conformers (I, II, III, and IV) were unequivocally assigned in the rotational spectrum, and their patterns were confirmed by the presence of the hyperfine structure owing to the 14N quadrupolar nucleus. The relative intensities of the observed transitions suggest a conformational energy ordering of I < II < III < IV. Natural bond orbital and non-covalent interaction calculations reveal that the geometric preferences for the observed conformers are governed by an interplay of subtle attractive interactions (including hyperconjugation involving the lone pair at nitrogen) and repulsive effects.

12.
J Phys Chem A ; 125(16): 3425-3431, 2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33881320

ABSTRACT

The rotational fingerprint of the thiophene-water complex was investigated for the first time using Fourier transform microwave spectroscopy (7-20 GHz) aided by quantum mechanical calculations. Transitions for a single species were observed, and the rotational constants for the parent and 18O isotopomers are consistent with a geometry that is highly averaged over a barrierless large-amplitude motion of water that interconverts two equivalent forms corresponding to the global minimum (B2PLYP-D3(BJ)/def2-TZVP). In this effective geometry, the water lies above the thiophene ring close to its σv plane of symmetry. The observed transitions are split by a second water-centered tunneling motion that exchanges its two protons by internal rotation about its C2 axis with a calculated barrier of ∼2.7 kJ mol-1 (B2PLYP-D3(BJ)/def2-TZVP). Based on quantum theory of atoms in molecules, noncovalent interaction, and symmetry-adapted perturbation theory analyses, the observed geometry enables two intermolecular interactions (O-H···π and O-H···S) whose electrostatic and dispersive contributions favor formation of the thiophene-water complex.

13.
Phys Chem Chem Phys ; 23(12): 7368-7375, 2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33876096

ABSTRACT

The conformational landscape of the monohydrated complex of N-allylmethylamine (AMA-w) was investigated for the first time using rotational spectroscopy from 8-20 GHz and quantum chemistry calculations. From a total of nine possible energy minima within 10 kJ mol-1, transitions for the two most stable conformers of AMA-w were detected, and assigned aided by DFT and ab initio MP2 predictions. The observed rotational transitions displayed characteristic hyperfine splittings due to the presence of the 14N quadrupolar nucleus. Quantum theory of atoms in molecules (QTAIM), non-covalent interaction (NCI) and natural bond orbital (NBO) analyses showed that the observed conformers of AMA-w are stabilized by two intermolecular interactions consisting of a dominant NH-O and a secondary C-HO hydrogen bond (HB) in which the water molecule acts simultaneously as a HB donor and acceptor. The HBs formed with water do not change the relative energy ordering of the most stable conformers of AMA but do affect the stability of higher energy conformations by disrupting the intramolecular forces responsible for their geometries. By comparing the intermolecular interaction energies with those of the monohydrates of the simplest primary (methylamine, MA), secondary (dimethylamine, DMA) and tertiary (trimethylamine, TMA) amines using symmetry-adapted perturbation theory (SAPT) calculations, we find that AMA forms the strongest bound complex with water. This is rationalized through the identification of subtle differences in stabilizing and destabilizing contributions across the amine-w series of complexes.

14.
Micron ; 145: 103033, 2021 06.
Article in English | MEDLINE | ID: mdl-33714851

ABSTRACT

The literature has shown that the application of laminography provides advantages as 3D radiographic imaging with depth information for in house and mobile testing. This permits to distinguish between overlapping indications, measure the extension along radiation direction and classify indications as surface open or subsurface ones as required in critical engineering assessment. This work provides a comparative study and measurements of the three techniques Digital Radiography (DR) with Digital Detector Arrays (DDA), Coplanar Translational Laminography (CTL) and Computed Tomography (CT), applied for composite pipeline inspection. It is demonstrated that CTL and CT provide advantages for the evaluation of pipe-to-pipe connections and the evaluation of adhesive applications. They show indications of discontinuities with higher contrast sensitivity than radiography. Beyond it, two specimen, namely Phantom 1 and Phantom 2, were developed and manufactured by additive manufacturing to analyze the preferential detection sensitivity and the direction of features and depth information for laminographic measurements. Another goal was to show the laminographic capabilities to distinguish between overlapping discontinuities. CTL is especially suitable for mobile inspection. Special glass fiber reinforced polymer samples (GRP) were manufactured for further analysis and comparisons between the abovementioned techniques. Finally, Phantoms 1 and 2 show the capability of laminography to detect overlapping indications and also show that discontinuities oriented perpendicular to the scan direction have the highest contrast sensitivity for laminographic measurements.

15.
Chemphyschem ; 21(22): 2515-2522, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33010186

ABSTRACT

The highly variable conformational landscape of N-allylmethylamine (AMA) was investigated using Fourier transform microwave spectroscopy aided by high-level theoretical calculations to understand the energy relationship governing the interconversion between nine stable conformers. Spectroscopically, transitions belonging to four low energy conformers were identified and their hyperfine patterns owing to the 14 N quadrupolar nucleus were unambiguously resolved. The rotational spectrum of the global minimum geometry, conformer I, shows an additional splitting associated with a tunneling motion through an energy barrier interconnecting its enantiomeric forms. A two-step tunneling trajectory is proposed by finding transition state structures corresponding to the allyl torsion and NH inversion. Natural bond orbital and non-covalent interaction analyses reveal that an interplay between steric and hyperconjugative effects rules the conformational preferences of AMA.

16.
J Phys Chem A ; 124(19): 3876-3885, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32315179

ABSTRACT

The pure rotational spectrum of allyl isothiocyanate (CH2=CHCH2-NCS) was collected from 4 to 26 GHz using Fourier transform microwave (FTMW) spectroscopy. Its analysis revealed the presence of two conformers that arise due to variation in the CCCN and CCNC dihedral angles. The observed spectrum is consistent with the accompanying potential energy surfaces derived using quantum chemical calculations at the B3LYP-D3(BJ) and MP2 levels of theory. Together, this experimental and theoretical study unequivocally identifies a new conformer (I) as the global minimum geometry. The spectral assignment of this new conformer is verified by the observation of transitions consistent with its 34S, 13C, and 15N isotopologues and with the characteristic 14N quadrupole hyperfine patterns. For conformer I, the substitution (rs) and effective ground state (r0) structures were derived and reveal contributions from a large amplitude motion in the CCNC angle. The remaining geometric parameters compare well with the equilibrium structure (re) from B3LYP-D3(BJ)/cc-pVQZ calculations. The derived CNC bond angle of 152.6(3)° for conformer I of allyl-NCS is found to be ∼15° larger than that of allyl-NCO (137.5(4)°), which is in line with a change in the hybridization at nitrogen from an orbital with more ∼sp character in allyl-NCS to ∼sp1.5 in allyl-NCO as determined via natural bond orbital analyses.

17.
J Chem Phys ; 151(19): 194304, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31757132

ABSTRACT

The conformations of allyl isocyanate (CH2=CHCH2N=C=O) were explored in the gas phase by combining theoretical calculations and Fourier transform microwave spectroscopy, including the chirped pulse and Balle-Flygare types. Three conformers (I, II, and III) were predicted using D3(BJ) dispersion-corrected B3LYP and MP2 methods; however, the lowest energy conformer (conf. I) was absent at the standard B3LYP level. The observed microwave spectra are consistent with the presence of both conf. I and III in the supersonic jet, and surprisingly, this is the first report of the global minimum conf. I both experimentally and theoretically. Rotational transitions from the parent species of both conformers as well as their minor isotopologues (13C, 15N, and 18O) in natural abundance were assigned allowing experimental geometries to be derived. For conf. I, in addition to the typical splitting pattern due to the 14N quadrupole nucleus, the transitions show a tunneling splitting which arises from the interconversion motion between its two mirror images. The experimental observation of conf. I and the absence of conf. II in the jet are rationalized using quantum-chemical calculations to explore the importance of electron correlation and in particular, demonstrate the necessity of including dispersion effects in density functional theory calculations even for seemingly small molecules.

18.
J Phys Chem A ; 123(45): 9840-9849, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31674188

ABSTRACT

The effect of sulfur hydrogen bonding on the conformational equilibrium of methyl 3-mercaptopropionate was investigated using microwave spectroscopy in a supersonic jet expansion. The two most stable conformers (I and II) were assigned in the rotational spectra, and complex splitting patterns owing to the methyl internal rotation and SH tunneling motion were resolved and analyzed in detail. For both conformers, the experimental torsional barriers for the methyl top are similar and about 5.1 kJ mol-1, revealing that their geometrical differences do not affect the methyl internal rotation. The experimentally derived rotational and centrifugal distortion constants, along with the methyl internal rotation barriers, are discussed and compared with results from density functional theory and ab initio calculations. Quantum theory of atoms in molecules, noncovalent interactions, and natural bond orbital analyses show that the global minimum geometry (I), which has the thiol hydrogen oriented toward the carbonyl of the ester, is stabilized by an SH···O=C hydrogen bond. The presence of a hydrogen bond is confirmed by the derivation of an accurate experimental geometry that reveals a hydrogen bond distance and S-H-O angle of 2.515(4) Å and 117.4(1)°, respectively. These results are key benchmarks to expand the current knowledge of sulfur hydrogen bonds and the relationship between internal motions and conformational preferences in esters.

19.
J Phys Chem A ; 123(12): 2351-2360, 2019 Mar 28.
Article in English | MEDLINE | ID: mdl-30817149

ABSTRACT

The pure rotational spectra of phenyl isocyanate (PhNCO) and phenyl isothiocyanate (PhNCS) were investigated using Fourier transform microwave spectroscopy in the range from 4 to 26 GHz. For each molecule, rotational transitions due to the parent species and nine minor isotopologues including seven 13C, one 15N, and one 18O/34S have been observed in natural abundance. The rm(1) geometries were derived from the resulting sets of rotational constants and are consistent with the equilibrium structures (re) from ab initio calculations performed at the MP2/aug-cc-pVTZ level. NBO and Townes-Dailey analyses were conducted to better understand the electronic structure and geometry of each compound. In the case of PhNCS, the nitrogen atom displays more sp-like character resulting in shorter C-N bonds and a larger CNC angle relative to those of PhNCO.

20.
J Phys Chem A ; 122(18): 4555-4561, 2018 May 10.
Article in English | MEDLINE | ID: mdl-29664636

ABSTRACT

The conformational preferences of proteinogenic glutamic acid esterified (GluOMe) and N-acetylated (AcGluOMe) derivatives have been determined in solution for the first time. Theoretical calculations at the ωB97X-D/aug-cc-pVTZ made possible the assignment of six and eight stable conformers for GluOMe and AcGluOMe, respectively. The conformational equilibrium of the studied compounds was evaluated in different organic solvents using a combination of the integral equation formalism polarizable continuum model (IEF-PCM) and 1H NMR spectroscopy data. The results showed that the conformational equilibrium of both derivatives change in the presence of solvent. According to the quantum theory of atoms in molecules (QTAIM), non-covalent interactions (NCI), and natural bond orbitals (NBO) analyses, the conformational preferences observed for GluOMe and AcGluOMe are not dictated by the presence of a specific interaction but are due to a combination of hyperconjugative and steric effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...