Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 14(4): e11294, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38633520

ABSTRACT

Flowering time is an important phenological trait in plants and a critical determinant of the success of pollination and fruit or seed development, with immense significance for agriculture as it directly affects crop yield and overall food production. Shifts in the growth season, changes in the growth season duration and changes in the production rate are environmental processes (potentially linked to climate change) that can lead to changes in flowering time in the long-term due to selection. In contrast, biomass loss (due to, for example, herbivory or diseases) can have profound consequences for plant mass production and food security. We model the effects of these environmental processes on the flowering time evolutionarily stable strategy (ESS) of annual plants and the potential consequences for reproductive output. Our model recapitulates previous theoretical results linked to climate change and light competition and makes novel predictions about the effects of biomass loss on the evolution of flowering time. Our analysis elucidates how both the magnitude and direction of the evolutionary response can depend on whether biomass loss occurs during the earlier vegetative phase or during the later reproductive phase and on whether or not plants are adapted to grow in dense, competitive environments. Specifically, light competition generates an asymetric effect of mass loss on flowering time even when loss is indiscriminate (equal rates), with vegetative mass loss having a stronger effect on flowering time (resulting in greater ESS change) and final reproductive output.

2.
Theriogenology ; 188: 108-115, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35688040

ABSTRACT

Spermatozoa motility in freshwater and marine fish is mainly controlled by the difference in osmotic pressure. Specifically, zebrafish (Danio rerio) spermatozoa undergo hypoosmotic shock due to the decrease in extracellular potassium, which leads to membrane hyperpolarization and activation of flagellar motility. Previous studies have concluded that motility activation has a negative effect on the spermatozoa structure. However, no evidence exists about ultrastructural changes in zebrafish spermatozoa after motility activation. In this study, spermatozoa samples were obtained from ten adult zebrafish individuals before and 60 s after motility activation and analyzed using Scanning and Transmission Electron Microscopy. Results showed dramatic morphological and ultrastructural alterations of the zebrafish spermatozoa after activation. In particular, the spermatozoa head underwent severe morphological distortion, including swelling of the nucleus, the bursting of the plasma membrane, and the alteration of the genetic material. Midpieces were also affected after activation since rupture of the cell membrane and lysis of mitochondria occurred. Furthermore, after the hypoosmotic shock, most spermatozoa showed a coiled flagellum and a disaggregated plasma membrane. Overall, our findings show that the activation of motility leads to substantial zebrafish spermatozoa morphological and ultrastructural changes, which could modify their physiology and decrease the fertilizing potential.


Subject(s)
Spermatozoa , Zebrafish , Animals , Fertilization , Male , Sperm Head , Sperm Motility/physiology , Spermatozoa/physiology
3.
Evolution ; 76(3): 679-680, 2022 03.
Article in English | MEDLINE | ID: mdl-35085403

ABSTRACT

Social behavior is observed in a wide range of species, and its potential benefits include protection from predators, enhanced feeding, and reproductive opportunities. Experimental approaches using artificial selection on sociability can answer fundamental questions about the evolution of social behavior, such as: Can sociability evolve by artificial selection? Is aggressiveness associated with sociability levels? Does sociability increase reproductive success? Scott et al. attempt to answer those questions using the fruit fly as a model species.


Subject(s)
Reproduction , Social Behavior , Aggression , Animals , Drosophila
4.
PLoS Genet ; 17(5): e1009581, 2021 05.
Article in English | MEDLINE | ID: mdl-34038409

ABSTRACT

In a changing environment, small RNAs (sRNAs) play an important role in the post-transcriptional regulation of gene expression and can vary in abundance depending on the conditions experienced by an individual (phenotypic plasticity) and its parents (non-genetic inheritance). Many sRNAs are unusual in that they can be produced in two ways, either using genomic DNA as the template (primary sRNAs) or existing sRNAs as the template (secondary sRNAs). Thus, organisms can evolve rapid plastic responses to their current environment by adjusting the amplification rate of sRNA templates. sRNA levels can also be transmitted transgenerationally by the direct transfer of either sRNAs or the proteins involved in amplification. Theory is needed to describe the selective forces acting on sRNA levels, accounting for the dual nature of sRNAs as regulatory elements and templates for amplification and for the potential to transmit sRNAs and their amplification agents to offspring. Here, we develop a model to study the dynamics of sRNA production and inheritance in a fluctuating environment. We tested the selective advantage of mutants capable of sRNA-mediated phenotypic plasticity within resident populations with fixed levels of sRNA transcription. Even when the resident was allowed to evolve an optimal constant rate of sRNA production, plastic amplification rates capable of responding to environmental conditions were favored. Mechanisms allowing sRNA transcripts or amplification agents to be inherited were favored primarily when parents and offspring face similar environments and when selection acts before the optimal level of sRNA can be reached within the organism. Our study provides a clear set of testable predictions for the evolution of sRNA-related mechanisms of phenotypic plasticity and transgenerational inheritance.


Subject(s)
Environment , Evolution, Molecular , Heredity , Models, Genetic , Phenotype , RNA/biosynthesis , RNA/genetics , Adult , Animals , Female , Genetic Fitness , Humans , Male , Mutation , Selection, Genetic , Transcription, Genetic
5.
Evolution ; 75(3): 756-758, 2021 03.
Article in English | MEDLINE | ID: mdl-33469918

ABSTRACT

Recently diverged species often show incomplete reproductive isolation and subsequently experience hybridization and introgression. The plant genus Mimulus includes many such examples of closely related taxa that prove useful for studying incipient speciation. However, Sandstedt et al. show that in contrast to other Mimulus species, species of the M. tilingii complex are characterized by strong postzygotic isolation mediated by multiple barriers. This finding highlights the diverse speciation histories of related plant groups.


Subject(s)
Mimulus , Hybridization, Genetic , Mimulus/genetics , Reproductive Isolation
6.
Genes (Basel) ; 11(10)2020 09 30.
Article in English | MEDLINE | ID: mdl-33007827

ABSTRACT

The hallmark of sex chromosome evolution is the progressive suppression of recombination which leads to subsequent degeneration of the non-recombining chromosome. In birds, species belonging to the two major clades, Palaeognathae (including tinamous and flightless ratites) and Neognathae (all remaining birds), show distinctive patterns of sex chromosome degeneration. Birds are female heterogametic, in which females have a Z and a W chromosome. In Neognathae, the highly-degenerated W chromosome seems to have followed the expected trajectory of sex chromosome evolution. In contrast, among Palaeognathae, sex chromosomes of ratite birds are largely recombining. The underlying reason for maintenance of recombination between sex chromosomes in ratites is not clear. Degeneration of the W chromosome might have halted or slowed down due to a multitude of reasons ranging from selective processes, such as a less pronounced effect of sexually antagonistic selection, to neutral processes, such as a slower rate of molecular evolution in ratites. The production of genome assemblies and gene expression data for species of Palaeognathae has made it possible, during recent years, to have a closer look at their sex chromosome evolution. Here, we critically evaluate the understanding of the maintenance of recombination in ratites in light of the current data. We conclude by highlighting certain aspects of sex chromosome evolution in ratites that require further research and can potentially increase power for the inference of the unique history of sex chromosome evolution in this lineage of birds.


Subject(s)
Palaeognathae/genetics , Sex Chromosomes/genetics , Animals , Euchromatin , Evolution, Molecular , Female , Heterochromatin , Male , Phylogeny , Recombination, Genetic , Selection, Genetic , Sex Chromatin , Sex Chromosomes/physiology
7.
Evolution ; 74(12): 2743-2745, 2020 12.
Article in English | MEDLINE | ID: mdl-33128386

ABSTRACT

The cognitive buffer hypothesis poses that brain size evolves to buffer individuals from environmental changes, increasing survival. Jiménez-Ortega et al. (2020) explored this hypothesis using a phylogenetic path analysis and showed that there is a direct causal link between brain size and longevity in birds, even when allometric effects are taken into account. Furthermore, a synergistic model was better supported than models that included independent effects of brain size and body size.


Subject(s)
Biological Evolution , Longevity , Animals , Birds , Body Size , Brain , Humans , Organ Size , Phylogeny
8.
Environ Int ; 145: 106145, 2020 12.
Article in English | MEDLINE | ID: mdl-33038624

ABSTRACT

Wildlife population dynamics are shaped by multiple natural and anthropogenic factors, including predation, competition, stressful life history events, and external environmental stressors such as diseases and pollution. Marine mammals such as gray seals rely on extensive blubber layers for insulation and energy storage, making this tissue critical for survival and reproduction. This lipid rich blubber layer also accumulates hazardous fat soluble pollutants, such as polychlorinated biphenyls (PCBs), that can directly impact adipose function or be mobilized during periods of negative energy balance or transferred to offspring to exert further impacts on target tissues or vulnerable life stages. To predict how marine mammals will respond to ecological and anthropogenic stressors, it is necessary to use process-based modelling approaches that integrate environmental inputs, full species life history, and stressor impacts with individual dynamics of energy intake, storage, and utilization. The purpose of this study was to develop a full lifecycle dynamic energy budget and individual based model (DEB-IBM) that captured Baltic gray seal physiology and life history, and showcase potential applications of the model to predict population responses to select stressors known to threaten gray seals and other marine mammals around the world. We explore variations of three ecologically important stressors using phenomenological simulations: food limitation, endocrine disrupting chemicals that reduce fertility, and infectious disease. Using our calibrated DEB-IBM for Baltic gray seals, we found that continuous incremental food limitation can be more detrimental to population size than short random events of starvation, and further, that the effect of endocrine disruptors on population growth and structure is delayed due to bioaccumulation, and that communicable diseases significantly decrease population growth even when spillover events are relatively less frequent. One important finding is the delayed effect on population growth rate from some stressors, several years after the exposure period, resulting from a decline in somatic growth, increased age at maturation and decreased fecundity. Such delayed responses are ignored in current models of population viability and can be important in the correct assessment of population extinction risks. The model presented here provides a test bed on which effects of new hazardous substances and different scenarios of future environmental change affecting food availability and/or seal energetic demands can be investigated. Thus, the framework provides a tool for better understanding how diverse environmental stressors affect marine mammal populations and can be used to guide scientifically based management.


Subject(s)
Environmental Pollutants , Polychlorinated Biphenyls , Seals, Earless , Animals , Energy Metabolism , Environmental Pollutants/analysis , Life Cycle Stages , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/toxicity
9.
J Evol Biol ; 32(6): 535-544, 2019 06.
Article in English | MEDLINE | ID: mdl-30817032

ABSTRACT

Sperm function and quality are primary determinants of male reproductive performance and hence fitness. The presence of rival males has been shown to affect ejaculate and sperm traits in a wide range of taxa. However, male physiological conditions may not only affect sperm phenotypic traits but also their genetic and epigenetic signatures, affecting the fitness of the resulting offspring. We investigated the effects of male-male competition on sperm quality using TUNEL assays and geometric morphometrics in the zebrafish, Danio rerio. We found that the sperm produced by males exposed to high male-male competition had smaller heads but larger midpiece and flagellum than sperm produced by males under low competition. Head and flagella also appeared less sensitive to the osmotic stress induced by activation with water. In addition, more sperm showed signals of DNA damage in ejaculates of males under high competition. These findings suggest that the presence of a rival male may have positive effects on sperm phenotypic traits but negative effects on sperm DNA integrity. Overall, males facing the presence of rival males may produce faster swimming and more competitive sperm but this may come at a cost for the next generation.


Subject(s)
Social Environment , Spermatozoa , Animals , Female , Genome , Male , Phenotype , Zebrafish
10.
PLoS One ; 13(7): e0200028, 2018.
Article in English | MEDLINE | ID: mdl-29990374

ABSTRACT

The starting point of a new generation in sexually reproducing species is fertilization. In many species, fertilization is followed by cell divisions controlled primarily by maternal transcripts, with little to no zygotic transcription. The activation of the zygotic genome (ZGA) is part of a process called maternal-to-zygotic transition (MZT), during which transcripts from the zygotic genome take control of development, setting the conditions for cellular specialization. While we know that epigenetic processes (e.g. methylation) are involved in the MZT, their roles and interplay in the transition are largely unknown. I developed a model and used simulations to elucidate the interaction between possible epigenetic processes, namely methylation processes, involved in the MZT. The model focuses on the dynamics of global methylation levels and how these interact with factors such as a parental repressor and the nucleocytoplasmic ratio to trigger the ZGA, followed by development from fertilization to adulthood. In addition, I included transgenerational effects transmitted to the zygote from both parents through their gametes to show that these may set the stage for plastic developmental processes. I demonstrate that the rates of maintenance methylation and demethylation, which are important for the achievement of the final methylation levels of an individual, exhibit a certain level of flexibility in terms of parameter values. I find that high final methylation levels require more restricted combinations of parameter values. The model is discussed in the context of the current empirical knowledge and provide suggestions for directions of future empirical and theoretical studies.


Subject(s)
DNA Methylation , Genome/genetics , Models, Genetic , Mothers , Zygote/metabolism
11.
Front Genet ; 6: 283, 2015.
Article in English | MEDLINE | ID: mdl-26442101

ABSTRACT

Understanding the evolutionary emergence and subsequent diversification of the vertebrate skeleton requires a comprehensive view of the diverse skeletal cell types found in distinct developmental contexts, tissues, and species. To date, our knowledge of the molecular nature of the shark calcified extracellular matrix, and its relationships with osteichthyan skeletal tissues, remain scarce. Here, based on specific combinations of expression patterns of the Col1a1, Col1a2, and Col2a1 fibrillar collagen genes, we compare the molecular footprint of endoskeletal elements from the chondrichthyan Scyliorhinus canicula and the tetrapod Xenopus tropicalis. We find that, depending on the anatomical location, Scyliorhinus skeletal calcification is associated to cell types expressing different subsets of fibrillar collagen genes, such as high levels of Col1a1 and Col1a2 in the neural arches, high levels of Col2a1 in the tesserae, or associated to a drastic Col2a1 downregulation in the centrum. We detect low Col2a1 levels in Xenopus osteoblasts, thereby revealing that the osteoblastic expression of this gene was significantly reduced in the tetrapod lineage. Finally, we uncover a striking parallel, from a molecular and histological perspective, between the vertebral cartilage calcification of both species and discuss the evolutionary origin of endochondral ossification.

SELECTION OF CITATIONS
SEARCH DETAIL
...