Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Acta Trop ; 213: 105732, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33188750

ABSTRACT

Blastospores or conidia (formulated or not) of entomopathogenic fungi were assessed against Aedes aegypti larvae. Larvae (L2) were exposed to 105, 106, 107, and 108 propagules mL-1 water suspension. Mineral oil at 0.1%, 0.5%, or 1.0% (v/v) was employed to observe the effect on larval survival. The 0.1% mineral oil did not affect larval survival. Accordingly, 107 propagules mL-1 and 0.1% mineral oil were used to prepare all fungal emulsions. The fungal suspension or formulation was prepared as follows: 107 propagules mL-1 on 0.03% TweenⓇ 80 (v/v) aqueous solution or 107 propagules mL-1 on 0.03% TweenⓇ 80 plus 0.1% mineral oil; larval survival rates were evaluated for 7 days, and median survival time (S50) was also determined. The presence of fungi in larvae was examined both histologically and by scanning electron microscopy 24 h or 48 h after exposure. To evaluate the larval growth, larvae were exposed to 107 propagules mL-1 for 48 hours and their length measured using a digital caliper. Here, propagules had similar results in reducing the larvae survival rate and time. The treatment with Beauveria bassiana s.l. at 108 propagules mL-1 or with Metarhizium anisopliae s.l. at 108 blastopores mL-1 reduced the larval survival time to two days. M. anisopliae s.l. at 108 conidia mL-1 reduced the survival time to three days. The survival time of larvae submitted to the other treatments ranged from 6 days to over 7 days. M. anisopliae s.l. or B. bassiana s.l. oil-in-water emulsions at 107 propagules mL-1 yielded better results than the water suspensions, the larvae survival rate was 2 days for both propagules in oil-in-water emulsion. Larvae exposed to blastospores from both isolates or M. anisopliae conidia were longer than in the other treatments. Scanning electron microscopy and histology analyzes found fungi predominantly in the gut, mouthparts, and perispiracular lobes of larvae. Formulated fungus yielded better results than the aqueous suspensions for control of mosquito larvae. Thus, for the first time, the effect of mineral oil on the fungal interaction on A. aegypti larvae was observed as well as the effect of entomopathogenic fungi in the growth of larvae, supporting the search for strategies to control this arthropod.


Subject(s)
Aedes/microbiology , Beauveria , Metarhizium , Pest Control, Biological , Aedes/growth & development , Aedes/ultrastructure , Animals , Beauveria/physiology , Host Microbial Interactions , Larva/growth & development , Larva/microbiology , Larva/ultrastructure , Metarhizium/physiology , Microscopy, Electron, Scanning , Mineral Oil , Spores, Fungal/physiology
2.
Parasitol Res ; 112(10): 3645-51, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23949242

ABSTRACT

The aim of the study was to assess the effect of the association of entomopathogenic nematodes and fungi on Rhipicephalus microplus. The nematodes used were Heterorhabditis bacteriophora HP88 and Heterorhabditis indica LPP1 and the fungi were Metarhizium anisopliae IBCB 116 and Beauveria bassiana ESALQ 986. In the groups treated with the fungi, the females were immersed for 3 min in a conidial suspension, while in the groups treated with the nematodes, the ticks were exposed to infective juveniles. To evaluate the interaction between entomopathogens, the females were first immersed in a conidial suspension and then exposed to the nematodes. The egg mass weight and hatching percentage values of the groups treated with M. anisopliae IBCB 116 and B. bassiana ESALQ 986 in the two experiments were statistically similar (p > 0.05) to the values of the control group. In the groups treated only with nematodes, there was a significant reduction (p < 0.05) in the egg mass weight, a fact also observed for the hatching percentage of the group treated with H. indica LPP1. In all the groups treated with nematodes in association with fungi, there was a significant reduction (p < 0.05) in the egg mass weight and hatching percentage. The percentage of control of the groups treated with fungi alone varied from 31 to 55%. In the groups treated with nematodes associated or not with fungi, the control percentage was always greater than 90% and reached 100% in the group treated with H. bacteriophora HP88 associated with the fungus M. anisopliae IBCB 116.


Subject(s)
Beauveria/physiology , Ixodidae/microbiology , Ixodidae/parasitology , Metarhizium/physiology , Nematoda/physiology , Pest Control, Biological/methods , Animals , Female , Host-Pathogen Interactions , Larva
SELECTION OF CITATIONS
SEARCH DETAIL
...