Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Parasitol ; 64(4): 693-699, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30887270

ABSTRACT

BACKGROUND: Angiostrongylus cantonensis is a metastrongylid nematode that has a heteroxenous cycle, where snails act as intermediate hosts and the rodents Rattus rattus and Rattus novergicus are the definitive hosts. However, humans may act as accidental hosts presenting an atypical form of parasitism. This fact has motivated research to better understand systems of relationships involving A. cantonensis, targeting the control of species of gastropods that act as intermediary hosts. METHODS: For this, six groups were formed: three control groups (uninfected) and three infected groups, exposed to approximately 1200 L1 larvae of A. cantonensis. At the end of each week (1, 2, and 3 weeks), snails were dissected without anesthesia and the gonad-digestive gland (DGG) complex was separated for determination of oxygen consumption through high-resolution titration-injection respirometer (Oroboros, Oxygraph; Innsbruck, Austria). RESULTS: The results indicate suppression of mitochondrial oxidative metabolism of the host and compromised in different mitochondrial respiratory states. This effect, mainly observed in the group exposed to 1 week of infection, showed a decrease of approximately 38% (2.78 ± 0.37 pmol O2/mg of tissue; P < 0.05), 41% (2.76 ± 0.34 pmol O2/mg of tissue; P < 0.05) e 46% (2.91 ± 0.36 pmol O2/mg of tissue; P < 0.05) in the basal oxygen consumption after sequential addition (P + M), succinate and (ADP) in the respiratory medium, differing significantly from the control group. CONCLUSION: The results presented indicate that the prepatent infection by this metastrongylid impairs the aerobic oxidative metabolism of its host, causing a reduction in basal oxygen consumption. This effect, observed at the start of development of the parasites, indicates that this stage is the most critical for the success of the infection, and can be explained by a reduction of the mitochondrial density of the tissue analyzed, or also by suppression of enzyme centers related to the oxidative reactions.


Subject(s)
Biomphalaria/physiology , Biomphalaria/parasitology , Host-Parasite Interactions , Mitochondria/physiology , Oxygen/metabolism , Strongylida Infections/pathology , Angiostrongylus cantonensis , Animals , Larva/growth & development , Oxidation-Reduction
2.
Exp Parasitol ; 2016 May 27.
Article in English | MEDLINE | ID: mdl-27240754

ABSTRACT

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.

3.
J Invertebr Pathol ; 115: 80-5, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24513030

ABSTRACT

The effect of concurrent infection by Echinostoma paraensei and Angiostrongylus cantonensis on the activity of the enzymes alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and the concentration of total proteins, uric acid and urea in the hemolymph of Biomphalaria glabrata were investigated. Additionally, histopathological studies were conducted to better understand the dynamics of ontogenic development of both helminths in the host and the possible biochemical effects. Co-infections by helminths and other parasites often occur due to the wide distribution of helminths and the chronic nature of the infection. The biochemical parameters were measured at the end of the seventh week after exposure. The co-infection resulted in a significant decrease in the total proteins concentration in the hemolymph of snails as well as an increase in the nitrogen excretion products, these results showed that the infection leads to exhaustion of free circulating and stored carbohydrates and the infected snails make use alternative substrates, such as free amino acids. So, the protein degradation to release free amino acids causes a decrease in the content of total proteins in the snail host and an amino acids deamination process, increasing the content of ammonium, which needs to be detoxified. This occurs by increasing the urea and uric acid contents. This observation is corroborated by the increase of ALT and AST activities, enzymes directly related to amino group from an amino acid to an α- ketoacid an important step to generate new carbon skeleton for glucose synthesis de novo, as well as new intermediates to the Krebs cycle. Additionally, reduction in the recovery of L3 from the co-infected group (A + E) was observed, since in this association the burden was higher than in the other. Histopathological results showed a change in the distribution of A. cantonensis in the presence of E. paraensei, indicating that the presence of this trematode impairs the dynamic transmission of A. cantonensis.


Subject(s)
Biomphalaria/parasitology , Echinostomiasis , Strongylida Infections , Angiostrongylus cantonensis , Animals , Echinostoma
SELECTION OF CITATIONS
SEARCH DETAIL
...