Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
An Acad Bras Cienc ; 96(2): e20231247, 2024.
Article in English | MEDLINE | ID: mdl-38808881

ABSTRACT

Thiosemicarbazones are promising classes of compounds with antitumor activity. For this study, six 2,4-dihydroxy-benzylidene-thiosemicarbazones compounds were synthesized. These compounds were submitted to different assays in silico, in vitro and in vivo to evaluate the toxicological, antioxidant and antitumor effects. The in silico results were evaluated by the SwissADME and pkCSM platforms and showed that all compounds had good oral bioavailability profiles. The in vitro and in vivo toxicity assays showed that the compounds showed low cytotoxicity against different normal cells and did not promote hemolytic effects. The single dose acute toxicity test (2000 mg/kg) showed that none of the compounds were toxic to mice. In in vitro antioxidant activity assays, the compounds showed moderate to low activity, with PB17 standing out for the ABTS radical capture assay. The in vivo antioxidant activity highlighted the compounds 1, 6 and 8 that promoted a significant increase in the concentration of liver antioxidant enzymes. Finally, all compounds showed promising antitumor activity against different cell lines, especially MCF-7 and DU145 lines, in addition, they inhibited the growth of sarcoma 180 at concentrations lower than 50 mg/kg. These results showed that the evaluated compounds can be considered as potential antitumor agents.


Subject(s)
Antineoplastic Agents , Antioxidants , Thiosemicarbazones , Animals , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemistry , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Mice , Humans , Male , Cell Line, Tumor , Computer Simulation , Drug Screening Assays, Antitumor , Female , Benzylidene Compounds/pharmacology , Benzylidene Compounds/chemistry
2.
Toxins (Basel) ; 15(3)2023 02 28.
Article in English | MEDLINE | ID: mdl-36977074

ABSTRACT

Mycotoxins are toxic and carcinogenic metabolites produced by groups of filamentous fungi that colonize food crops. Aflatoxin B1 (AFB1), ochratoxin A (OTA) and fumonisin B1 (FB1) are among the most relevant agricultural mycotoxins, as they can induce various toxic processes in humans and animals. To detect AFB1, OTA and FB1 in the most varied matrices, chromatographic and immunological methods are primarily used; however, these techniques are time-consuming and expensive. In this study, we demonstrate that unitary alphatoxin nanopore can be used to detect and differentiate these mycotoxins in aqueous solution. The presence of AFB1, OTA or FB1 inside the nanopore induces reversible blockage of the ionic current flowing through the nanopore, with distinct characteristics of blockage that are unique to each of the three toxins. The process of discrimination is based on the residual current ratio calculation and analysis of the residence time of each mycotoxin inside the unitary nanopore. Using a single alphatoxin nanopore, the mycotoxins could be detected at the nanomolar level, indicating that alphatoxin nanopore is a promising molecular tool for discriminatory analysis of mycotoxins in aqueous solution.


Subject(s)
Aflatoxins , Fumonisins , Mycotoxins , Nanopores , Ochratoxins , Animals , Humans , Ochratoxins/analysis , Fumonisins/toxicity , Aflatoxins/analysis , Mycotoxins/analysis , Aflatoxin B1/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...