Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetol Metab Syndr ; 15(1): 185, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37697407

ABSTRACT

BACKGROUND: This study aimed to determine the association between glycemic variability (GV) and mortality in hospitalized patients with coronavirus disease 2019 (COVID-19). METHODS: We prospectively analyzed data from inpatients (> 18 years old) with RT-PCR confirmed COVID-19 admitted between March 2020 and July 2021. All patients were hospitalized for more than 48 h and had at least six point-of-care capillary glucose tests obtained three times daily in the pre-prandial period during hospitalization. GV was measured using the glucose standard deviation (SD) and coefficient of variation (CV). ROC curve was adjusted to determine the SD and CV cutoff values associated with mortality (44.7 mg/dL and 27.5%, respectively); values above these were considered indicative of high GV. Logistic regression models were fitted to explore the association between GV and mortality in patients with and without diabetes. RESULTS: A total of 628 patients were stratified into SD < 44.7 mg/dL (n = 357) versus ≥ 44.7 mg/dL (n = 271) and CV < 27.5% (n = 318) versus ≥ 27.5% (n = 310) groups. After controlling for age, sex, presence of diabetes mellitus (DM) and cardiovascular disease, we found a significant association between high GV and mortality (odds ratio 2.99 [1.88-4.77] for SD and 2.43 [1.54-3.85] for CV; p values < 0.001). The mortality rate was higher with SD ≥ 44.7 mg/dL and CV ≥ 27.5% compared to that with SD < 44.7 mg/dL and CV < 27.5%, regardless of DM (p < 0.001 for all). CONCLUSION: High glycemic variability was independently associated with mortality in patients with and without DM, who were hospitalized with COVID-19.

2.
Respir Med Case Rep ; 31: 101292, 2020.
Article in English | MEDLINE | ID: mdl-33200067

ABSTRACT

The COVID-19 pandemic is a worldwide threat, and information on physiopathological aspects of the disease is limited. Despite efforts in searching treatment options, a better understanding of the SARS-CoV-2 pathways can contribute to managing severe cases. In this study, we aim to describe pathological and immunopathogenic findings of two different cases, both in the high-risk group. Post-mortem lung biopsies were analyzed by traditional and immunohistochemical methods. Tissue expression of innate and adaptive immune response biomarkers was tested. We observed a higher innate response in case 1 with an abundance of mast cells, scarce CD8+ lymphocytes, high expression of TNF-alpha, and almost absent adaptative immune response. In case 2, the adaptative immune response was present, with numerous CD8+ lymphocytes and higher levels of IL-4 and TGF-beta. Both cases converged to a prothrombotic state expressing high IL-6, followed by ICAM-1 expression and endotheliites leading to systemic inflammatory response syndrome. In conclusion, differences in age and comorbidities and immune response described here may be related to the SARS-CoV-2 delay in the adaptative immune response, evolution stage of diffuse alveolar damage, and progression for systemic inflammatory response syndrome.

3.
Sci Rep ; 10(1): 18689, 2020 10 29.
Article in English | MEDLINE | ID: mdl-33122784

ABSTRACT

The COVID-19 fatality rate is high when compared to the H1N1pdm09 (pandemic Influenza A virus H1N1 subtype) rate, and although both cause an aggravated inflammatory response, the differences in the mechanisms of both pandemic pneumonias need clarification. Thus, our goal was to analyze tissue expression of interleukins 4, 13, (IL-4, IL-13), transforming growth factor-beta (TGF-ß), and the number of M2 macrophages (Sphingosine-1) in patients who died by COVID-19, comparing with cases of severe pneumopathy caused by H1N1pdm09, and a control group without lung injury. Six lung biopsy samples of patients who died of SARS-CoV-2 (COVID-19 group) were used and compared with ten lung samples of adults who died from a severe infection of H1N1pdm09 (H1N1 group) and eleven samples of patients who died from different causes without lung injury (CONTROL group). The expression of IL-4, IL-13, TGF-ß, and M2 macrophages score (Sphingosine-1) were identified through immunohistochemistry (IHC). Significantly higher IL-4 tissue expression and Sphingosine-1 in M2 macrophages were observed in the COVID-19 group compared to both the H1N1 and the CONTROL groups. A different mechanism of diffuse alveolar damage (DAD) in SARS-CoV-2 compared to H1N1pdm09 infections were observed. IL-4 expression and lung remodeling are phenomena observed in both SARS-CoV-2 and H1N1pdm09. However, SARS-CoV-2 seems to promote lung damage through different mechanisms, such as the scarce participation Th1/Th17 response and the higher participation of the Th2. Understanding and managing the aggravated and ineffective immune response elicited by SARS-CoV-2 merits further clarification to improve treatments propose.


Subject(s)
Coronavirus Infections/metabolism , Interleukin-13/metabolism , Interleukin-4/metabolism , Lung/metabolism , Pneumonia, Viral/metabolism , Aged , Aged, 80 and over , Biomarkers/metabolism , COVID-19 , Coronavirus Infections/pathology , Female , Humans , Interleukin-13/genetics , Interleukin-4/genetics , Lung/pathology , Macrophages/metabolism , Male , Middle Aged , Pandemics , Pneumonia, Viral/pathology , Sphingosine/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...