Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Braz Dent J ; 30(6): 607-616, 2019.
Article in English | MEDLINE | ID: mdl-31800756

ABSTRACT

Diamond-like carbon (DLC) film is a biocompatible hard coating material that can prevent the leaching of metal ions. This study evaluates the structural characteristics of DLC, with and without silver nanoparticles, deposited by plasma (PECVD) on titanium alloy (Ti-6Al-4V) and bone formation in contact with DLC films. Sixty Ti-6Al-4V samples were used divided in: uncoated, coated with DLC and coated with DLC-Ag. After structural characterization, samples were fixed bilaterally at the rabbit's mandible. After 15 and 90 days, samples were characterized again and bone formation in the area was analyzed by histomorphometry. Statistical analysis was performed by two-way ANOVA. Both the DLC and DLC-Ag films were firmly adhered and showed a high electrical resistance without significant changes in the Raman spectrum after in vivo integration. After 15 days, there were immature bone trabeculae in the interface and partially covering the surface. After 90 days, mature bone filled the interface and coved the surface. There was no statistically significant difference among the three groups in both periods. In conclusion, osseointegration with DLC, DLC-Ag and uncoated Ti-6Al-4V is similar. However, DLC and DLC-Ag coverings have the advantage of electrical insulation and can presumably control bacterial activity and ion leaching.


Subject(s)
Alloys , Metal Nanoparticles , Animals , Carbon , Diamond , Materials Testing , Rabbits , Silver , Surface Properties , Titanium
2.
J Investig Clin Dent ; 10(4): e12477, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31713296

ABSTRACT

AIM: To analyze the effect of a silicon (Si)-based film deposited on yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) on the topography and bond strength of resin cement. METHODS: Specimens of zirconia were obtained and randomly divided into 4 groups, according to surface treatment: polished group (PG) zirconia; sandblasted group (SG) zirconia with aluminum oxide (100 µm); after polished, zirconia was coated with Si-based film group (SiFG); and after sandblasted, zirconia was coated with Si-based film group (SiFSG). The Si-based films were obtained through plasma-enhanced chemical vapor deposition. Surface roughness and contact angle analysis were performed. Resin cement cylinders were built up on the treated surface of blocks, after applying Monobond-S. The specimens were submitted to thermocycling aging and shear bond strength testing. The Kruskal-Wallis and Mann-Whitney U-tests were performed. RESULTS: There were significant differences between the surface treatments for each roughness parameter measured. Si-based film increased roughness and decreased the contact angle. Si-based film groups also demonstrated significantly lower bond strength values. CONCLUSION: Si-based film produced using plasma deposition provided lower bond strength to resin cement compared with conventional treatment; however, the film deposition reduced the contact angle and improved roughness, favorable properties in the long way to prepare an optimum material.


Subject(s)
Dental Bonding , Silicon , Dental Stress Analysis , Materials Testing , Microscopy, Electron, Scanning , Resin Cements , Shear Strength , Surface Properties , Yttrium , Zirconium
3.
Braz. dent. j ; 30(6): 607-616, Nov.-Dec. 2019. tab, graf
Article in English | LILACS | ID: biblio-1055448

ABSTRACT

Abstract Diamond-like carbon (DLC) film is a biocompatible hard coating material that can prevent the leaching of metal ions. This study evaluates the structural characteristics of DLC, with and without silver nanoparticles, deposited by plasma (PECVD) on titanium alloy (Ti-6Al-4V) and bone formation in contact with DLC films. Sixty Ti-6Al-4V samples were used divided in: uncoated, coated with DLC and coated with DLC-Ag. After structural characterization, samples were fixed bilaterally at the rabbit's mandible. After 15 and 90 days, samples were characterized again and bone formation in the area was analyzed by histomorphometry. Statistical analysis was performed by two-way ANOVA. Both the DLC and DLC-Ag films were firmly adhered and showed a high electrical resistance without significant changes in the Raman spectrum after in vivo integration. After 15 days, there were immature bone trabeculae in the interface and partially covering the surface. After 90 days, mature bone filled the interface and coved the surface. There was no statistically significant difference among the three groups in both periods. In conclusion, osseointegration with DLC, DLC-Ag and uncoated Ti-6Al-4V is similar. However, DLC and DLC-Ag coverings have the advantage of electrical insulation and can presumably control bacterial activity and ion leaching.


Resumo O filme de carbono semelhante a diamante (DLC) é um material de revestimento duro e biocompatível que pode impedir a corrosão com liberação de íons metálicos. Este estudo avaliou as características estruturais do filme de DLC, com e sem nanopartículas de prata (Ag), depositadas por plasma (PECVD) em liga de titânio (Ti-6Al-4V) e formação óssea em contato com filmes de DLC. Foram utilizadas 60 amostras de Ti-6Al-4V divididas em: não recobertas, recobertas com DLC e recobertas com DLC-Ag. Após caracterização estrutural, amostras foram fixadas bilateralmente na mandíbula de coelhos. Após 15 e 90 dias, as amostras foram novamente caracterizadas e a formação óssea na área foi analisada por histomorfometria. A análise estatística foi realizada por ANOVA dois fatores. Ambos os filmes DLC e DLC-Ag foram firmemente aderidos e mostraram uma alta resistência elétrica sem alterações significativas no espectro Raman após a osseointegração in vivo. Após 15 dias, havia trabéculas ósseas imaturas na interface e cobrindo parcialmente a superfície. Após 90 dias, o osso maduro preencheu a interface e a superfície. Não houve diferença estatisticamente significante entre os três grupos nos dois períodos. Em conclusão, a osseointegração com DLC, DLC-Ag e Ti-6Al-4V não revestido é similar. No entanto, os revestimentos DLC e DLC-Ag têm a vantagem do isolamento elétrico e podem presumivelmente controlar a atividade bacteriana e a corrosão com liberação de íons.


Subject(s)
Animals , Rabbits , Alloys , Metal Nanoparticles , Silver , Surface Properties , Titanium , Materials Testing , Carbon , Diamond
SELECTION OF CITATIONS
SEARCH DETAIL
...