Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 42(11): 113448, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37967010

ABSTRACT

CD4+ T cells are key components of the immune response during lung infections and can mediate protection against tuberculosis (TB) or influenza. However, CD4+ T cells can also promote lung pathology during these infections, making it unclear how these cells control such discrepant effects. Using mouse models of hypervirulent TB and influenza, we observe that exaggerated accumulation of parenchymal CD4+ T cells promotes lung damage. Low numbers of lung CD4+ T cells, in contrast, are sufficient to protect against hypervirulent TB. In both situations, lung CD4+ T cell accumulation is mediated by CD4+ T cell-specific expression of the extracellular ATP (eATP) receptor P2RX7. P2RX7 upregulation in lung CD4+ T cells promotes expression of the chemokine receptor CXCR3, favoring parenchymal CD4+ T cell accumulation. Our findings suggest that direct sensing of lung eATP by CD4+ T cells is critical to induce tissue CD4+ T cell accumulation and pathology during lung infections.


Subject(s)
Influenza, Human , Tuberculosis , Animals , Humans , Mice , CD4-Positive T-Lymphocytes , Influenza, Human/metabolism , Lung/pathology , Receptors, Chemokine/metabolism , Tuberculosis/pathology
3.
Cell Death Dis ; 12(7): 692, 2021 07 10.
Article in English | MEDLINE | ID: mdl-34247195

ABSTRACT

Chagas disease is a life-threatening disorder caused by the protozoan parasite Trypanosoma cruzi. Parasite-specific antibodies, CD8+ T cells, as well as IFN-γ and nitric oxide (NO) are key elements of the adaptive and innate immunity against the extracellular and intracellular forms of the parasite. Bim is a potent pro-apoptotic member of the Bcl-2 family implicated in different aspects of the immune regulation, such as negative selection of self-reactive thymocytes and elimination of antigen-specific T cells at the end of an immune response. Interestingly, the role of Bim during infections remains largely unidentified. To explore the role of Bim in Chagas disease, we infected WT, Bim+/-, Bim-/- mice with trypomastigotes forms of the Y strain of T. cruzi. Strikingly, our data revealed that Bim-/- mice exhibit a delay in the development of parasitemia followed by a deficiency in the control of parasite load in the bloodstream and a decreased survival compared to WT and Bim+/- mice. At the peak of parasitemia, peritoneal macrophages of Bim-/- mice exhibit decreased NO production, which correlated with a decrease in the pro-inflammatory Small Peritoneal Macrophage (SPM) subset. A similar reduction in NO secretion, as well as in the pro-inflammatory cytokines IFN-γ and IL-6, was also observed in Bim-/- splenocytes. Moreover, an impaired anti-T. cruzi CD8+ T-cell response was found in Bim-/- mice at this time point. Taken together, our results suggest that these alterations may contribute to the establishment of a delayed yet enlarged parasitic load observed at day 9 after infection of Bim-/- mice and place Bim as an important protein in the control of T. cruzi infections.


Subject(s)
Bcl-2-Like Protein 11/deficiency , Chagas Disease/parasitology , Trypanosoma cruzi/pathogenicity , Animals , Bcl-2-Like Protein 11/genetics , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/parasitology , Cells, Cultured , Chagas Disease/genetics , Chagas Disease/immunology , Chagas Disease/metabolism , Disease Models, Animal , Female , Host-Parasite Interactions , Interferon-gamma/metabolism , Interleukin-6/metabolism , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/parasitology , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide/metabolism , Parasite Load , Spleen/immunology , Spleen/metabolism , Spleen/parasitology , Time Factors , Trypanosoma cruzi/immunology
4.
J Infect Dis ; 223(3): 494-507, 2021 02 13.
Article in English | MEDLINE | ID: mdl-33206171

ABSTRACT

BACKGROUND: The role of myeloid-derived suppressor cells (MDSCs) in patients with severe tuberculosis who suffer from uncontrolled pulmonary inflammation caused by hypervirulent mycobacterial infection remains unclear. METHODS: This issue was addressed using C57BL/6 mice infected with highly virulent Mycobacterium bovis strain MP287/03. RESULTS: CD11b+GR1int population increased in the bone marrow, blood and lungs during advanced disease. Pulmonary CD11b+GR1int (Ly6GintLy6Cint) cells showed granularity similar to neutrophils and expressed immature myeloid cell markers. These immature neutrophils harbored intracellular bacilli and were preferentially located in the alveoli. T-cell suppression occurred concomitantly with CD11b+GR1int cell accumulation in the lungs. Furthermore, lung and bone marrow GR1+ cells suppressed both T-cell proliferation and interferon γ production in vitro. Anti-GR1 therapy given when MDSCs infiltrated the lungs prevented expansion and fusion of primary pulmonary lesions and the development of intragranulomatous caseous necrosis, along with increased mouse survival and partial recovery of T-cell function. Lung bacterial load was reduced by anti-GR1 treatment, but mycobacteria released from the depleted cells proliferated extracellularly in the alveoli, forming cords and clumps. CONCLUSIONS: Granulocytic MDSCs massively infiltrate the lungs during infection with hypervirulent mycobacteria, promoting bacterial growth and the development of inflammatory and necrotic lesions, and are promising targets for host-directed therapies.


Subject(s)
Granulocytes , Lung/metabolism , Mycobacterium bovis , Myeloid-Derived Suppressor Cells , Tuberculosis , Animals , Antigens, Ly , Bone Marrow , CD11b Antigen , Cell Proliferation , Disease Models, Animal , Granulocytes/immunology , Immunomodulation , Lung/pathology , Mice , Mice, Inbred C57BL , Mycobacterium bovis/pathogenicity , Myeloid Cells , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/pathology , Neutrophils , Tuberculosis/pathology
5.
PLoS Negl Trop Dis ; 12(8): e0006617, 2018 08.
Article in English | MEDLINE | ID: mdl-30067739

ABSTRACT

Cardiomyopathy is the most serious consequence of Chagas disease, a neglected human disorder caused by Trypanosoma cruzi infection. Because T. cruzi parasites invade cardiomyocytes, we sought to investigate whether these cells recognize the parasite in vivo by receptors signaling through the MyD88 adaptor, which mediates the activation pathway of most Toll-like receptors (TLRs) and IL-1/IL-18 receptors, and influence the development of acute cardiac pathology. First, we showed that HL-1 cardiac muscle cell line expresses MyD88 gene and protein at resting state and after T. cruzi infection. To evaluate the role in vivo of MyD88 expression in cardiomyocytes, we generated Mer+MyD88flox+/+ mice in which tamoxifen treatment is expected to eliminate the MyD88 gene exclusively in cardiomyocytes. This Cre-loxP model was validated by both PCR and western blot analysis; tamoxifen treatment of Mer+MyD88flox+/+ mice resulted in decreased MyD88 gene and protein expression in the heart, but not in the spleen, while had no effect on littermates. The elimination of MyD88 in cardiomyocytes determined a lower increase in CCL5, IFNγ and TNFα gene transcription during acute infection by T. cruzi parasites of the Y strain, but it did not significantly modify heart leukocyte infiltration and parasitism. Together, our results show that cardiomyocytes can sense T. cruzi infection through MyD88-mediated molecular pathways and contribute to the local immune response to the parasite. The strong pro-inflammatory response of heart-recruited leukocytes may overshadow the effects of MyD88 deficiency in cardiomyocytes on the local leukocyte recruitment and T. cruzi control during acute infection.


Subject(s)
Chagas Cardiomyopathy/immunology , Myeloid Differentiation Factor 88/metabolism , Myocytes, Cardiac/metabolism , Trypanosoma cruzi/immunology , Animals , Cell Line , Chagas Cardiomyopathy/metabolism , Cytokines/genetics , Cytokines/metabolism , Gene Expression Regulation/drug effects , Genotype , Humans , Mice, Knockout , Mice, Transgenic , Myeloid Differentiation Factor 88/genetics , Myocardium/immunology , Myocardium/metabolism , RNA, Messenger , Selective Estrogen Receptor Modulators/pharmacology , Tamoxifen/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...