Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neurochem Res ; 49(1): 170-183, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37684384

ABSTRACT

The glutamatergic hypothesis of schizophrenia suggests a correlation between NMDA receptor hypofunction and negative psychotic symptoms. It has been observed that the expression of the proline transporter (PROT) in the central nervous system (CNS) is associated with glutamatergic neurotransmission, as L-proline has the capacity to activate and modulate AMPA and NMDA receptors. In this study, we aimed to investigate whether inhibition of proline transporters could enhance glutamatergic neurotransmission and potentially exhibit antipsychotic effects in an experimental schizophrenia model. Using molecular dynamics analysis in silico, we validated an innovative PROT inhibitor, LQFM215. We quantified the cytotoxicity of LQFM215 in the Lund human mesencephalic cell line (LUHMES). Subsequently, we employed the ketamine-induced psychosis model to evaluate the antipsychotic potential of the inhibitor, employing behavioral tests including open-field, three-chamber interaction, and prepulse inhibition (PPI). Our results demonstrate that LQFM215, at pharmacologically active concentrations, exhibited negligible neurotoxicity when astrocytes were co-cultured with neurons. In the ketamine-induced psychosis model, LQFM215 effectively reduced hyperlocomotion and enhanced social interaction in a three-chamber social approach task across all administered doses. Moreover, the compound successfully prevented the ketamine-induced disruption of sensorimotor gating in the PPI test at all tested doses. Overall, these findings suggest that PROT inhibition could serve as a potential therapeutic target for managing symptoms of schizophrenia model.


Subject(s)
Amino Acid Transport Systems, Neutral , Antipsychotic Agents , Ketamine , Schizophrenia , Humans , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Schizophrenia/chemically induced , Schizophrenia/drug therapy , Schizophrenia/metabolism , Ketamine/pharmacology , Ketamine/therapeutic use , Amino Acid Transport Systems, Neutral/therapeutic use , Receptors, N-Methyl-D-Aspartate
2.
Brain Behav Immun Health ; 30: 100623, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37096172

ABSTRACT

L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia is a side effect of Parkinson's disease treatment and it is characterized by atypical involuntary movements. A link between neuroinflammation and L-DOPA-induced dyskinesia has been documented. Hydrogen gas (H2) has neuroprotective effects in Parkinson's disease models and has a major anti-inflammatory effect. Our objective is to test the hypothesis that H2 inhalation reduces L-DOPA-induced dyskinesia. 15 days after 6-hydroxydopamine lesions of dopaminergic neurons were made (microinjection into the medial forebrain bundle), chronic L-DOPA treatment (15 days) was performed. Rats were exposed to H2 (2% gas mixture, 1 h) or air (controls) before L-DOPA injection. Abnormal involuntary movements and locomotor activity were conducted. Striatal microglia and astrocyte was analyzed and striatal and plasma samples for cytokines evaluation were collected after the abnormal involuntary movements analysis. H2 inhalation attenuated L-DOPA-induced dyskinesia. The gas therapy did not impair the improvement of locomotor activity achieved by L-DOPA treatment. H2 inhalation reduced activated microglia in the lesioned striatum, which is consistent with the observed reduced pro-inflammatory cytokines levels. Display of abnormal involuntary movements was positively correlated with plasma IL-1ß and striatal TNF-α levels and negatively correlated with striatal IL-10 levels. Prophylactic H2 inhalation decreases abnormal involuntary movements in a preclinical L-DOPA-induced dyskinesia model. The H2 antidyskinetic effect was associated with decreased striatal and peripheral inflammation. This finding has a translational importance to L-DOPA-treated parkinsonian patients' well-being.

3.
Adv Exp Med Biol ; 1400: 15-33, 2022.
Article in English | MEDLINE | ID: mdl-35930223

ABSTRACT

Schizophrenia is a complex and heterogeneous neurodevelopmental psychiatric disorder characterized by a variety of symptoms classically grouped into three main domains: positive (hallucinations, delusions, and thought disorder) and negative symptoms (social withdrawal, lack of affect) and cognitive dysfunction (attention, working and episodic memory functions, and processing speed). This disorder places an immense emotional and economic pressure on the individual and society-at-large. Although the etiology of schizophrenia is not completely known, it is proposed to involve abnormalities in neurodevelopmental processes and dysregulation in the signaling mediated by several neurotransmitters, such as dopamine, glutamate, and GABA. Preclinical research using animal models are essential in our understanding of disease development and pathology as well as the discovery and advance of novel treatment choices. Here we describe rodent models for studying schizophrenia, including those based on the effects of drugs (pharmacological models), neurodevelopmental disruption, demyelination, and genetic alterations. The advantages and limitations of such models are highlighted. We also discussed the great potential of proteomic technologies in unraveling the molecular mechanism of schizophrenia through animal models.


Subject(s)
Schizophrenia , Animals , Attention , Disease Models, Animal , Dopamine/chemistry , Humans , Models, Animal , Proteomics , Schizophrenia/diagnosis
4.
Psychopharmacology (Berl) ; 239(9): 2713-2734, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35904579

ABSTRACT

RATIONALE: Autism spectrum disorder (ASD) is defined as a group of neurodevelopmental disorders whose symptoms include impaired communication and social interaction, restricted and repetitive patterns of behavior, and varying levels of intellectual disability. ASD is observed in early childhood and is one of the most severe chronic childhood disorders in prevalence, morbidity, and impact on society. It is usually accompanied by attention deficit hyperactivity disorder, anxiety, depression, sleep disorders, and epilepsy. The treatment of ASD has low efficacy, possibly because it has a heterogeneous nature, and its neurobiological basis is not clearly understood. Drugs such as risperidone and aripiprazole are the only two drugs available that are recognized by the Food and Drug Administration, primarily for treating the behavioral symptoms of this disorder. These drugs have limited efficacy and a high potential for inducing undesirable effects, compromising treatment adherence. Therefore, there is great interest in exploring the endocannabinoid system, which modulates the activity of other neurotransmitters, has actions in social behavior and seems to be altered in patients with ASD. Thus, cannabidiol (CBD) emerges as a possible strategy for treating ASD symptoms since it has relevant pharmacological actions on the endocannabinoid system and shows promising results in studies related to disorders in the central nervous system. OBJECTIVES: Review the preclinical and clinical data supporting CBD's potential as a treatment for the symptoms and comorbidities associated with ASD, as well as discuss and provide information with the purpose of not trivializing the use of this drug.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Cannabidiol , Aripiprazole/therapeutic use , Attention Deficit Disorder with Hyperactivity/drug therapy , Autism Spectrum Disorder/drug therapy , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Child, Preschool , Endocannabinoids , Humans
5.
Biomed Res Int ; 2019: 9171424, 2019.
Article in English | MEDLINE | ID: mdl-31317043

ABSTRACT

OBJECTIVE: Aging and AD are associated in some way, then it is reasonable to ask whether or not it is possible to age without AD inexorably appearing at any moment, depending on the period of life. Therefore, the goal of this review is to verify, in light of some aging theories, the prevalence of AD. METHODS: For the purpose of this manuscript, the indexers Alzheimer, aging, Alzheimer, and aging were considered; theories of aging were researched. The research was conducted using PubMed, Medline, Scopus, Elsevier, and Google Scholar. RESULTS: The most common subjects in the papers analyzed for this manuscript were aging and Alzheimer's disease. The association between Alzheimer and theories of aging seems inconclusive. CONCLUSIONS: Accordingly, the general idea is that AD is associated with aging in such a way that almost all people will present this disease; however, it is plausible to consider that the increase in life expectancy will generate a high prevalence of AD. In a general sense, it seems that the theories of aging explain the origin of AD under superlative and catastrophic considerations and use more biomolecular data than social or behavioral data as the bases of analysis, which may be the problem.


Subject(s)
Aging/physiology , Alzheimer Disease/epidemiology , Alzheimer Disease/physiopathology , Female , Humans , Male , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL
...