Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Fish Shellfish Immunol ; 126: 164-177, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35623544

ABSTRACT

This study evaluated the effects of agar waste (AW) dietary supplementation, obtained from the seaweed Gracilaria gracilis cultivated under two different spectral lights, neutral (NT) and blue (BL), on haematological parameters, inflammatory response, and antioxidant biomarkers of gilthead seabream (Sparus aurata). Three diets were prepared: i) a basal diet (CTR), ii) a diet supplemented with 2.5% NT, and iii) a diet supplemented with 2.5% BL. After 15 days of feeding, fish were injected with PBS (placebo) or inactivated Photobacterium damselae subsp. piscicida (stimulated) and sampled at 4 h and 24 h post-stimulus. Results indicated that fish fed NT and BL supplemented diets had lower Ht value and mean corpuscular volume (MCV) than fish fed the CTR diet, regardless of the stimulus and the sampling time. No differences in mean corpuscular haemoglobin (MCH) were found between fish fed the different diets, while the mean corpuscular haemoglobin concentration (MCHC) increased in fish fed AW supplemented diets compared to fish fed the CTR diet, regardless of the stimulus and the sampling time. In response to inflammation, fish fed the NT diet displayed higher neutrophils count in blood when compared to the CTR group, regardless of the stimulus and sampling time. Thrombocyte count was higher in fish fed NT and BL diets than in the CTR group, especially in the stimulated fish (Diet*injection (D*I), P = 0.004). An increase in plasma protease activity was detected in fish fed NT or BL diets in both placebo and stimulated fish regardless of the sampling time. Hepatic catalase activity was higher in fish fed the NT and BL than in the CTR group, particularly in the stimulated fish (D*I, P < 0.001). In addition, both stimulated and placebo fish that received the BL diet showed an increase in hepatic GR activity compared to the CTR group, regardless of the sampling time. Dietary supplementation with AW by-products obtained from G. gracilis cultured under NT and BL conditions showed to improve the inflammatory and antioxidant mechanisms in gilthead seabream in response to a UV-killed bacterial stimulus, having valuable applications for the sustainable use of seaweed toward improving the health and welfare of cultured fish.


Subject(s)
Fish Diseases , Gracilaria , Sea Bream , Seaweed , Animal Feed/analysis , Animals , Antioxidants , Diet/veterinary , Dietary Supplements , Oxidative Stress , Photobacterium
2.
Article in English | MEDLINE | ID: mdl-31004746

ABSTRACT

The replacement of fish oil (FO) with other lipid sources (e.g. animal fats, AF) in aquafeeds improves the sustainability of aquaculture, even though alternatives have different fatty acid (FA) profiles. FO contains a higher proportion of long-chain polyunsaturated fatty acids (LC-PUFAs) than AF. LC-PUFAs have key physiological roles, despite limited biosynthetic capacity in marine fish. Therefore, replacing FO in feeds may limit physiological responses when fish face environmental challenges such as an acute change in salinity. To test this hypothesis, juvenile seabass (62.6 ±â€¯1.6 g, 50 fish/ 500 L tank) were fed three different isoproteic and isolipidic diets in which the replacement levels of FO by AF varied (0%, 75% or 100% AF). Fish were fed the experimental diets at 2% their body weight (BW) daily for 85 days (20.0 ±â€¯1.0 °C; 35‰). Thereafter, half of the fish were transferred to tanks at 15‰ or 35‰ salinity and sampled at 24 h and 72 h. Plasma osmolality, Na+, glucose, cholesterol and lactate levels were altered by the changing salinity, although cortisol remained unchanged. Standard metabolic rate was similar irrespective of the experimental factors. However, maximal metabolic rate decreased by 4-10% in fish subjected to a 15‰ salinity. Intestinal chymotrypsin activity was modified by the diet, with this digestive enzyme along with trypsin showing a two-fold increase in activity at 15‰ salinity. Hepatic lipid peroxidation (LPO) showed a ~1.4-fold increase at 15‰ salinity. Additionally, LPO and glutathione reductase activity were ~1.6-fold higher in fish fed the FO diet. Citrate synthase activity in gills was increased in fish fed the 100% AF diet. Therefore, both dietary replacement of FO by AF and environmental salinity have an impact on the metabolic response of seabass, although interactions between both factors (diet and salinity) are negligible in the metabolic parameters investigated. The results are relevant to the aquaculture industry considering the potential usage of AF to replace FO in aquafeeds and because of the variations in salinity experienced by fish cultured in transitional waters.


Subject(s)
Animal Feed , Aquaculture/methods , Bass/metabolism , Dietary Fats/pharmacology , Fish Proteins/metabolism , Salinity , Animals , Fish Oils/pharmacology
3.
Article in English | MEDLINE | ID: mdl-28323073

ABSTRACT

Dietary ion content is known to alter the acid-base balance in freshwater fish. The current study investigated the metabolic impact of acid-base disturbances produced by differences in dietary electrolyte balance (DEB) in the meagre (Argyrosomus regius), an euryhaline species. Changes in fish performance, gastric chyme characteristics, pH and ion concentrations in the bloodstream, digestive enzyme activities and metabolic rates were analyzed in meagre fed ad libitum two experimental diets (DEB 200 or DEB 700mEq/kg) differing in the Na2CO3 content for 69days. Fish fed the DEB 200 diet had 60-66% better growth performance than the DEB 700 group. Meagre consuming the DEB 200 diet were 90-96% more efficient than fish fed the DEB 700 diet at allocating energy from feed into somatic growth. The pH values in blood were significantly lower in the DEB 700 group 2h after feeding when compared to DEB 200, indicating that acid-base balance in meagre was affected by electrolyte balance in diet. Osmolality, and Na+ and K+ concentrations in plasma did not vary with the dietary treatment. Gastric chyme in the DEB 700 group had higher pH values, dry matter, protein and energy contents, but lower lipid content than in the DEB 200 group. Twenty-four hours after feeding, amylase activity was higher in the gastrointestinal tract of DEB 700 group when compared to the DEB 200 group. DEB 700 group had lower routine metabolic (RMR) and standard metabolic (SMR) rates, indicating a decrease in maintenance energy expenditure 48h after feeding the alkaline diet. The current study demonstrates that feeding meagre with an alkaline diet not only causes acid-base imbalance, but also negatively affects digestion and possibly nutrient assimilation, resulting in decreased growth performance.


Subject(s)
Amylases/metabolism , Diet , Electrolytes/administration & dosage , Energy Metabolism/physiology , Perciformes/growth & development , Perciformes/metabolism , Water-Electrolyte Balance , Animal Feed , Animals , Gastric Mucosa/metabolism
4.
Lipids ; 51(6): 729-41, 2016 06.
Article in English | MEDLINE | ID: mdl-27169705

ABSTRACT

The meagre (Argyrosomus regius) is taking on increasing importance in the aquaculture industry. In view of the limited supply of fish oil (FO) as a feed ingredient, the study of the capacity to biosynthesize long-chain polyunsaturated fatty acids (LC-PUFA) from alternative dietary oil sources is important. We analyzed changes in fatty acid (FA) desaturase 2 (fads2) and FA elongase 5 (elovl5) mRNA levels in livers and brains in response to FO replacement with a blend of vegetable oils (VO) and selenium (Se) supplementation. Fish were fed for 60 days with either a diet containing FO or a diet including VO, each supplemented or not with organic Se. Results showed that fads2 and elovl5 transcription was higher in liver when fish were fed VO diets. The brain mRNA levels of both genes were not affected by the dietary replacement of FO by VO. FA composition in the liver and skeletal muscle was altered by FO replacement, particularly by decreasing eicosapentaenoic acid and docosahexaenoic acid contents. The α-linolenic, linoleic, and arachidonic acid contents increased in both liver and brain of fish fed VO diets. The effect of Se supplementation on lipid metabolism was evident only in fish fed FO, showing a decrease in the transcription of hepatic fads2. Results indicate that the total replacement of FO by VO in diets modulates the expression of genes involved in LC-PUFA biosynthesis in meagre, affecting the FA profile of the fish flesh.


Subject(s)
Acetyltransferases/genetics , Fatty Acid Desaturases/genetics , Perciformes/genetics , Plant Oils/administration & dosage , Selenium/administration & dosage , Animals , Brain/metabolism , Dietary Fats/administration & dosage , Dietary Supplements , Fatty Acid Elongases , Fatty Acids/metabolism , Fish Proteins/genetics , Gene Expression Regulation/drug effects , Lipid Metabolism/drug effects , Liver/metabolism , Plant Oils/pharmacology , Selenium/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...