Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 12471, 2019 08 28.
Article in English | MEDLINE | ID: mdl-31462741

ABSTRACT

MIB1 belongs to the RING domain containing family of E3 ubiquitin ligases. In vertebrates, MIB1 plays an essential role in activation of Notch signaling during development, through the ubiquitination and endocytosis of Notch ligands. More recently, Notch independent functions for MIB1 have been described in centriole homeostasis, dendritic spine outgrowth and directional cell migration. Here we use proximity-dependent biotin identification (BioID) to define the MIB1 interactome that included 163 high confidence interactions with polypeptides linked to centrosomes and cilia, endosomal trafficking, RNA and DNA processing, the ubiquitin system, and cell adhesion. Biochemical analysis identified several proteins within these groups including CCDC14 and EPS15 that were ubiquitinated but not degraded when co-expressed with MIB1. The MIB1 interactome included the epithelial cell polarity protein, EPB41L5. MIB1 binds to and ubiquitinates EPB41L5 resulting in its degradation. Furthermore, MIB1 ubiquitinates the EPB41L5-associated polarity protein CRB1, an important determinant of the apical membrane. In polarized cells, MIB1 localized to the lateral membrane with EPB41L5 and to the tight junction with CRB1, CRB3 and ZO1. Furthermore, over expression of MIB1 resulted in altered epithelial cell morphology and apical membrane expansion. These results support a role for MIB1 in regulation of polarized epithelial cell morphology.


Subject(s)
Cell Polarity , Epithelial Cells/metabolism , Tight Junctions/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Epithelial Cells/cytology , Eye Proteins/genetics , Eye Proteins/metabolism , HEK293 Cells , HeLa Cells , Humans , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Tight Junctions/genetics , Ubiquitin-Protein Ligases/genetics , Zonula Occludens-1 Protein/genetics , Zonula Occludens-1 Protein/metabolism
2.
Nat Cell Biol ; 18(12): 1281-1291, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27870829

ABSTRACT

During gastrulation of the mouse embryo, individual cells ingress in an apparently stochastic pattern during the epithelial-to-mesenchymal transition (EMT). Here we define a critical role of the apical protein Crumbs2 (CRB2) in the gastrulation EMT. Static and live imaging show that ingressing cells in Crumbs2 mutant embryos become trapped at the primitive streak, where they continue to express the epiblast transcription factor SOX2 and retain thin E-cadherin-containing connections to the epiblast surface that trap them at the streak. CRB2 is distributed in a complex anisotropic pattern on apical cell edges, and the level of CRB2 on a cell edge is inversely correlated with the level of myosin IIB. The data suggest that the distributions of CRB2 and myosin IIB define which cells will ingress, and we propose that cells with high apical CRB2 are basally extruded from the epiblast by neighbouring cells with high levels of apical myosin.


Subject(s)
Epithelial-Mesenchymal Transition , Gastrulation , Membrane Proteins/metabolism , Primitive Streak/cytology , Animals , Basement Membrane/metabolism , Germ Layers/cytology , Homeodomain Proteins/metabolism , Imaging, Three-Dimensional , In Situ Hybridization , Mammals/embryology , Mesoderm/cytology , Mesoderm/metabolism , Mice , Mutation/genetics , Nonmuscle Myosin Type IIB/metabolism
3.
PLoS Genet ; 11(10): e1005551, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26496195

ABSTRACT

Crumbs family proteins are apical transmembrane proteins with ancient roles in cell polarity. Mouse Crumbs2 mutants arrest at midgestation with abnormal neural plate morphology and a deficit of mesoderm caused by defects in gastrulation. We identified an ENU-induced mutation, wsnp, that phenocopies the Crumbs2 null phenotype. We show that wsnp is a null allele of Protein O-glucosyltransferase 1 (Poglut1), which encodes an enzyme previously shown to add O-glucose to EGF repeats in the extracellular domain of Drosophila and mammalian Notch, but the role of POGLUT1 in mammalian gastrulation has not been investigated. As predicted, we find that POGLUT1 is essential for Notch signaling in the early mouse embryo. However, the loss of mouse POGLUT1 causes an earlier and more dramatic phenotype than does the loss of activity of the Notch pathway, indicating that POGLUT1 has additional biologically relevant substrates. Using mass spectrometry, we show that POGLUT1 modifies EGF repeats in the extracellular domain of full-length mouse CRUMBS2. CRUMBS2 that lacks the O-glucose modification fails to be enriched on the apical plasma membrane and instead accumulates in the endoplasmic reticulum. The data demonstrate that CRUMBS2 is the target of POGLUT1 for the gastrulation epithelial-to-mesenchymal transitions (EMT) and that all activity of CRUMBS2 depends on modification by POGLUT1. Mutations in human POGLUT1 cause Dowling-Degos Disease, POGLUT1 is overexpressed in a variety of tumor cells, and mutations in the EGF repeats of human CRUMBS proteins are associated with human congenital nephrosis, retinitis pigmentosa and retinal degeneration, suggesting that O-glucosylation of CRUMBS proteins has broad roles in human health.


Subject(s)
Eye Proteins/genetics , Glucosyltransferases/genetics , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Receptor, Notch1/metabolism , Animals , Embryo, Mammalian , Embryonic Development , Eye Proteins/metabolism , Gastrulation/genetics , Glucosyltransferases/metabolism , Glycosylation , Humans , Membrane Proteins/metabolism , Mice , Nerve Tissue Proteins/metabolism , Phenotype , Protein Processing, Post-Translational/genetics , Receptor, Notch1/genetics , Signal Transduction
4.
Nature ; 459(7250): 1141-5, 2009 Jun 25.
Article in English | MEDLINE | ID: mdl-19553998

ABSTRACT

The integrity of polarized epithelia is critical for development and human health. Many questions remain concerning the full complement and the function of the proteins that regulate cell polarity. Here we report that the Drosophila FERM proteins Yurt (Yrt) and Coracle (Cora) and the membrane proteins Neurexin IV (Nrx-IV) and Na(+),K(+)-ATPase are a new group of functionally cooperating epithelial polarity proteins. This 'Yrt/Cora group' promotes basolateral membrane stability and shows negative regulatory interactions with the apical determinant Crumbs (Crb). Genetic analyses indicate that Nrx-IV and Na(+),K(+)-ATPase act together with Cora in one pathway, whereas Yrt acts in a second redundant pathway. Moreover, we show that the Yrt/Cora group is essential for epithelial polarity during organogenesis but not when epithelial polarity is first established or during terminal differentiation. This property of Yrt/Cora group proteins explains the recovery of polarity in embryos lacking the function of the Lethal giant larvae (Lgl) group of basolateral polarity proteins. We also find that the mammalian Yrt orthologue EPB41L5 (also known as YMO1 and Limulus) is required for lateral membrane formation, indicating a conserved function of Yrt proteins in epithelial polarity.


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/embryology , Epithelium/physiology , Membrane Proteins/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Cell Adhesion Molecules, Neuronal/genetics , Cell Line , Cell Polarity , Drosophila Proteins/genetics , Drosophila melanogaster/enzymology , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Epithelium/embryology , Gene Knockdown Techniques , Membrane Proteins/genetics , Mutation , Phenotype , Sodium-Potassium-Exchanging ATPase/genetics
5.
Biochemistry ; 46(48): 13704-10, 2007 Dec 04.
Article in English | MEDLINE | ID: mdl-17988153

ABSTRACT

The presenilin proteins (PS1 and PS2) with their partners (NCT, Aph1, and Pen2) are the major components of the high molecular weight gamma-secretase complex which facilitates the intramembraneous cleavage of various type 1 transmembrane proteins, including the amyloid-beta precursor protein (APP) and the Notch receptor. Additional gamma-secretase complex components may be involved in regulation of its activity and specificity. A recent investigation indicated that the Crumbs protein is a negative regulator of Notch signaling and may act by repressing gamma/epsilon-secretase activity in Drosophila [Herranz, H., Stamataki, E., Feiguin, F., and Milan, M. (2006) EMBO Rep. 7, 297-302]. To address this question, we investigated potential functional interactions between the human Crumbs homologues (CRB1, CRB2, and CRB3) and presenilin complexes which mediate gamma/epsilon-secretase cleavage of APP and Notch. We found no evidence for direct interaction between CRB1, CRB2, or CRB3 and presenilin complex components. Furthermore, overexpression of human CRB1 and related isoforms, CRB2 and CRB3, had no effect on the levels of presenilin complex components, on NCT maturation or on PS endoproteolysis, and did not alter Abeta AICD or NICD production. These results suggest that, in mammalian cells at least, Crumbs is unlikely to be a significant direct modulator of presenilin-dependent gamma/epsilon-secretase activity.


Subject(s)
Carrier Proteins/metabolism , Eye Proteins/metabolism , Membrane Glycoproteins/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Presenilins/metabolism , Animals , Blotting, Western , Cell Line , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Fluorescent Antibody Technique , Humans , Immunoprecipitation , Mice
6.
Development ; 134(11): 2007-16, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17507402

ABSTRACT

During early mouse development, a single-layered epithelium is transformed into the three germ layers that are the basis of the embryonic body plan. Here we describe an ENU-induced mutation, limulus (lulu), which disrupts gastrulation and the organization of all three embryonic germ layers. Positional cloning and analysis of additional alleles show that lulu is a null allele of the FERM-domain gene erythrocyte protein band 4.1-like 5 (Epb4.1l5). During gastrulation, some cells in lulu mutants are trapped in the primitive streak at an intermediate stage of the epithelial-mesenchymal transition; as a result, the embryos have very little paraxial mesoderm. Epithelial layers of the later lulu embryo are also disrupted: definitive endoderm is specified but does not form a gut tube, and the neural plate is broad and forms ectopic folds rather than closing to make the neural tube. In contrast to zebrafish and Drosophila, in which orthologs of Epb4.1l5 control the apical localization and activity of Crumbs proteins, mouse Crumbs proteins are localized normally to the apical surface of the lulu mutant epiblast and neural plate. However, the defects in both the lulu primitive streak and neural plate are associated with disruption of the normal organization of the actin cytoskeleton. We propose that mouse Lulu (Epb4.1l5) helps anchor the actin-myosin contractile machinery to the membrane to allow the dynamic rearrangements of epithelia that mediate embryonic morphogenesis.


Subject(s)
Epithelium/embryology , Membrane Proteins/genetics , Mesoderm/embryology , Morphogenesis/physiology , Neural Plate/embryology , Primitive Streak/embryology , Animals , Cell Differentiation/genetics , Cytoskeletal Proteins , Cytoskeleton/genetics , Cytoskeleton/physiology , Galactosides , Immunohistochemistry , In Situ Hybridization , Indoles , Mice , Morphogenesis/genetics , Mutation/genetics
7.
Dev Cell ; 11(3): 363-74, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16950127

ABSTRACT

The Crumbs (Crb) complex is a key regulator of epithelial cell architecture where it promotes apical membrane formation. Here, we show that binding of the FERM protein Yurt to the cytoplasmic domain of Crb is part of a negative-feedback loop that regulates Crb activity. Yurt is predominantly a basolateral protein but is recruited by Crb to apical membranes late during epithelial development. Loss of Yurt causes an expansion of the apical membrane in embryonic epithelia and photoreceptor cells similar to Crb overexpression and in contrast to loss of Crb. Analysis of yurt crb double mutants suggests that these genes function in one pathway and that yurt negatively regulates crb. We also show that the mammalian Yurt orthologs YMO1 and EHM2 bind to mammalian Crb proteins. We propose that Yurt is part of an evolutionary conserved negative-feedback mechanism that restricts Crb complex activity in promoting apical membrane formation.


Subject(s)
Body Patterning , Cell Membrane/physiology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/embryology , Epithelium/physiology , Membrane Proteins/metabolism , Animals , Cell Polarity , Drosophila Proteins/physiology , Embryonic Induction/genetics , Humans , Membrane Proteins/physiology , Mice , Retina/embryology , Spinal Cord/embryology
8.
Plant Signal Behav ; 1(5): 251-60, 2006 Sep.
Article in English | MEDLINE | ID: mdl-19516986

ABSTRACT

The proline-rich, extensin-like receptor kinase (PERK) family is characterized by a putative extracellular domain related to cell wall proteins, followed by a transmembrane domain and kinase domain. The original member, PERK1, was isolated from Brassica napus (BnPERK1) and 15 PERK1-related members were subsequently identified in the Arabidopsis thaliana genome. Ectopic expression and antisense suppression studies were performed using the BnPERK1 cDNA under the control of the 35S CaMV constitutive promoter and introduced into Arabidopsis. In the case of antisense suppression, the BnPERK1 cDNA shared sufficient sequence similarity to suppress several members of the At PERK family. In both sets of transgenic Arabidopsis, several heritable changes in growth and development were observed. Antisense BnPERK1 transgenic Arabidopsis showed various growth defects including loss of apical dominance, increased secondary branching, and floral organ defects. In contrast, Arabidopsis plants ectopically expressing BnPERK1 displayed a prolonged lifespan with increased lateral shoot production and seed set. Along with these phenotypic changes, aberrant deposits of callose and cellulose were also observed, suggestive of cell wall changes as a consequence of altered PERK expression.

SELECTION OF CITATIONS
SEARCH DETAIL
...