Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrason Sonochem ; 104: 106811, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38394823

ABSTRACT

Durian peel, an abundant waste in Malaysia could be a potential substrate for fermentable sugar recovery for value-added biochemical production. Common pretreatment such as acid or alkaline pretreatment resulted in the need for extensive solid washing which generated wastewater. Herein, this study aims to introduce sonication on top of chemical pretreatment to destruct lignin and reduce the chemical usage during the durian peel pretreatment process. In this study, the morphology and the chemical composition of the pretreated durian peels were studied. The sugar yield produced from the chemical pretreatment and the combined ultrasound and chemical pretreatment were compared. The morphology and chemical structure of durian peels were investigated by Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR) analysis and X-ray diffraction (XRD). The SEM images showed that the structural change became more significant when sonication was introduced. Second, XRD profile indicated a relatively higher crystallinity index and FTIR spectra displayed a lower intensity of lignin and hemicellulose for ultrasound plus alkaline (UB) pretreatment as compared to acid, alkaline and ultrasound plus acid (UA) pretreatment. UB and UA pretreatment portrayed higher yield (376.60 ± 12.14 and 237.38 ± 3.96 mg reducing sugar/g dry biomass, respectively) than their controls without the application of ultrasound. Therefore, it could be concluded that ultrasound was able to intensify the fermentable sugar recovery from durian peel by inducing physical and chemical effect of cavitation to alter the morphology of durian peel. Fermentation of UB treated durian peel resulted in 2.68 mol hydrogen/mol consumed sugar and 131.56 mL/Lmedium/h of hydrogen productivity. This study is important because it will shed light on a way to handle durian waste disposal problems and generate fermentable sugars for the production of high value-added products.


Subject(s)
Bombacaceae , Sugars , Lignin/chemistry , Hydrolysis , Carbohydrates , Acids , Biomass , Hydrogen
2.
J Environ Manage ; 321: 115892, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35988402

ABSTRACT

Biological hydrogen production using palm oil mill effluent (POME) as a carbon source through dark fermentation process has been suggested to be a promising bioenergy potential and enacts as alternative renewable energy source. Results have indicated that among various 1.5% (w/v) chemical pre-treatments (sodium hydroxide, NaOH; hydrochloric acid, HCl; sulphuric acid, H2SO4; phosphoric acid, H3PO4 and nitric acid, HNO3) on POME, using H3PO4 would generate maximum biohydrogen production of 0.193 mmol/L/h, which corresponded to a yield of 1.51 mol H2/mol TCconsumed with an initial total soluble carbohydrate concentration of 23.52 g/L. Among H3PO4 concentrations (1%-10%), the soluble carbohydrate content and the biohydrogen produced was highest and increased by 1.70-fold and 2.35-fold respectively at 2.5% (w/v), as compared to untreated POME. The batch fermentation maximum hydrogen production rate and yield of 0.208 mmol/L/h and 1.69 mol H2/mol TCconsumed were achieved at optimum pre-treatment conditions of pH 5.5 and thermophilic temperature (60 °C). This study suggests that chemical pre-treatment approaches manage to produce and improve the carbohydrate utilisation process further. Continuous fermentation in CSTR at the optimum conditions produce heightened 1.5-fold biohydrogen yield for 2.5% H3PO4 at 6 h HRT as compared to batch scale. Bacterial community via next-generation sequencing analysis at optimum HRT (6 h) revealed that Thermoanaerobacterium thermosaccharolyticum registered the highest relative frequency of 20.24%. At the class level, Clostridia, Bacilli, Bacteroidia, Thermoanaerobacteria, and Gammaproteobacteria were identified as the biohydrogen-producing bacteria in the continuous system. Insightful findings from this study suggest the substantial practical utility of dilute chemical pre-treatment in improving biohydrogen production.


Subject(s)
Bacteria , Hydrogen , Anaerobiosis , Carbohydrates , Fermentation , Palm Oil
SELECTION OF CITATIONS
SEARCH DETAIL
...