Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
BioTech (Basel) ; 13(2)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38921051

ABSTRACT

Worldwide meat consumption and production have nearly quintupled in the last 60 years. In this context, research and the application of new technologies related to animal reproduction have evolved in an accelerated way. The objective of the present study was to apply nanoemulsions (NEs) as carriers of lipids to feed bovine embryos in culture media and verify their impact on the development of embryos produced in vitro. The NEs were characterized by particle size, polydispersity, size distribution, physical stability, morphology using atomic force microscopy (AFM), surface tension, density, pH, and rheological behavior. The NEs were prepared by the emulsification/evaporation technique. A central composite rotatable design (CCRD) was used to optimize the NE fabrication parameters. The three optimized formulations used in the embryo application showed an emulsion stability index (ESI) between 0.046 and 0.086, which reflects high stability. The mean droplet diameter analyzed by laser diffraction was approximately 70-80 nm, suggesting a possible transit across the embryonic zona pellucida with pores of an average 90 nm in diameter. AFM images clearly confirm the morphology of spherical droplets with a mean droplet diameter of less than 100 nm. The optimized formulations added during the higher embryonic genome activation phase in bovine embryos enhanced early embryonic development.

2.
Cytotherapy ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38904584

ABSTRACT

BACKGROUND AND AIMS: Ovum pick-up (OPU) is an intrinsic step of in vitro fertilization procedures. Nevertheless, it can cause ovarian lesions and compromise female fertility in bovines. Recently, we have shown that intraovarian injection of adipose-derived mesenchymal stromal cells (AD-MSCs) effectively preserves ovarian function in bovines. Given that MSC-derived extracellular vesicles (MSC-EVs) have been shown to recapitulate several therapeutic effects attributed to AD-MSCs and that they present logistic and regulatory advantages compared to AD-MSCs, we tested whether MSC-EVs would also be useful to treat OPU-induced lesions. METHODS: MSC-EVs were isolated from the secretome of bovine AD-MSCs, using ultrafiltration (UF) and ultracentrifugation methods. The MSC-EVs were characterized according to concentration and mean particle size, morphology, protein concentration and EV markers, miRNA, mRNA, long noncoding RNA profile, total RNA yield and potential for induction of the proliferation and migration of bovine ovarian stromal cells. We then investigated whether intraovarian injection of MSC-EVs obtained by UF would reduce the negative effects of acute OPU-induced ovarian lesions in bovines. To do so, 20 animals were divided into 4 experimental groups (n = 5), submitted to 4 OPU cycles and different experimental treatments including vehicle only (G1), MSC-EVs produced by 7.5 × 106 AD-MSCs (G2), MSC-EVs produced by 2.5 × 106 AD-MSCs (G3) or 3 doses of MSC-EVs produced by 2.5 × 106 AD-MSCs, injected after OPU sessions 1, 2 and 3 (G4). RESULTS: Characterization of the MSC-EVs revealed that the size of the particles was similar in the different isolation methods; however, the UF method generated a greater MSC-EV yield. MSC-EVs processed by both methods demonstrated a similar ability to promote cell migration and proliferation in ovarian stromal cells. Considering the higher yield and lower complexity of the UF method, UF-MSC-EVs were used in the in vivo experiment. We evaluated three therapeutic regimens for cows subjected to OPU, noting that the group treated with three MSC-EV injections (G4) maintained oocyte production and increased in vitro embryo production, compared to G1, which presented compromised embryo production following the OPU-induced lesions. CONCLUSIONS: MSC-EVs have beneficial effects both on the migration and proliferation of ovarian stromal cells and on the fertility of bovines with follicular puncture injury in vivo.

3.
Cryobiology ; 115: 104901, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754687

ABSTRACT

While cryopreservation of cauda epididymal sperm (SpCau) allows the preservation of post-mortem bulls' gametes, the process triggers sperm damage. Although improving post-thaw sperm quality, using egg yolk extenders (EY) raises biosafety concerns which forces the use of EY-free extenders (EYFE). Since EYFE are less efficient in preserving post-thaw sperm quality, a strategy for ejaculated sperm (SpEj) frozen with EYFE is to add an Equilibrium Time (ET) step period to the cryopreservation process. However, the ET effect on the quality of SpCau cryopreserved in EYFE remains unknown. Distinct from SpEJ, SpCau physiologically displays cytoplasmic droplets (CDs) in the flagellum that may benefit cell exchange during ET. We hypothesized that using ET in SpCau cryopreserved with EYFE impacts sperm morphofunctional features, CD area, and in vitro fertility ability. Extender nanoparticles were also assessed. Following collection from the cauda epididymis of six Nellore bulls by retrograde flow, SpCau were cryopreserved in EYFE BoviFree® (Minitube, Germany) using three ET protocols: ET0 (no-ET); ET2.5 (2.5 h-ET); and ET5 (5 h-ET). SpCau from ET2.5 and ET5 showed a higher (P ≤ 0.05) percentage of motility and integrity of plasma and acrosome membranes and a smaller (P ≤ 0.05) distal CD area. There are no differences in sperm abnormalities, oxidative stress, capacitation-like events, and in vitro fertility ability. However, a better sperm recovery was found after Percoll® selection for ET2.5 and ET5. Interestingly, the number of nanoparticles in the extender decreased in post-thawed samples. In conclusion, an ET of 2.5 or 5 h is required for an efficient SpCau cryopreservation using an EYFE.


Subject(s)
Cryopreservation , Cryoprotective Agents , Epididymis , Nanoparticles , Semen Preservation , Sperm Motility , Spermatozoa , Male , Animals , Cryopreservation/methods , Cryopreservation/veterinary , Semen Preservation/methods , Semen Preservation/veterinary , Cryoprotective Agents/pharmacology , Spermatozoa/cytology , Epididymis/cytology , Cattle , Nanoparticles/chemistry , Egg Yolk/chemistry , Semen Analysis , Cytoplasm
4.
Anim Reprod ; 21(1): e20230039, 2024.
Article in English | MEDLINE | ID: mdl-38510565

ABSTRACT

In vitro cell culture is a well-established technique present in numerous laboratories in diverse areas. In reproduction, gametes, embryos, and reproductive tissues, such as the ovary and endometrium, can be cultured. These cultures are essential for embryo development studies, understanding signaling pathways, developing drugs for reproductive diseases, and in vitro embryo production (IVP). Although many culture systems are successful, they still have limitations to overcome. Three-dimensional (3D) culture systems can be close to physiological conditions, allowing greater interaction between cells and cells with the surrounding environment, maintenance of the cells' natural morphology, and expression of genes and proteins such as in vivo. Additionally, three-dimensional culture systems can stimulated extracellular matrix generating responses due to the mechanical force produced. Different techniques can be used to perform 3D culture systems, such as hydrogel matrix, hanging drop, low attachment surface, scaffold, levitation, liquid marble, and 3D printing. These systems demonstrate satisfactory results in follicle culture, allowing the culture from the pre-antral to antral phase, maintaining the follicular morphology, and increasing the development rates of embryos. Here, we review some of the different techniques of 3D culture systems and their applications to the culture of follicles and embryos, bringing new possibilities to the future of assisted reproduction.

5.
J Ovarian Res ; 17(1): 65, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38500173

ABSTRACT

BACKGROUND: It is well described that circulating progesterone (P4) plays a key role in several reproductive events such as oocyte maturation. However, during diestrus, when circulating P4 is at the highest concentrations, little is known about its local impact on the follicular cells such as intrafollicular P4 concentration due to corpus luteum (CL) presence within the same ovary. Based on that, our hypothesis is that the CL presence in the ovary during diestrus alters intrafollicular P4 concentrations, oocyte competence acquisition, follicular cells gene expression, and small extracellular vesicles (sEVs) miRNAs contents. RESULTS: P4 hormonal analysis revealed that ipsilateral to the CL follicular fluid (iFF) presented higher P4 concentration compared to contralateral follicular fluid (cFF). Furthermore, oocyte maturation and miRNA biogenesis pathways transcripts (ADAMTS-1 and AGO2, respectively) were increased in cumulus and granulosa cells of iFF, respectively. Nevertheless, a RT-PCR screening of 382 miRNAs showed that three miRNAs were upregulated and two exclusively expressed in sEVs from iFF and are predicted to regulate cell communication pathways. Similarly, seven miRNAs were higher and two exclusively expressed from cFF sEVs and are predicted to modulate proliferation signaling pathways. CONCLUSION: In conclusion, intrafollicular P4 concentration is influenced by the presence of the CL and modulates biological processes related to follicular cell development and oocyte competence, which may influence the oocyte quality. Altogether, these results are crucial to improve our knowledge about the follicular microenvironment involved in oocyte competence acquisition.


Subject(s)
Extracellular Vesicles , MicroRNAs , Female , Animals , Cattle , Follicular Fluid/metabolism , Progesterone/metabolism , Ovarian Follicle/metabolism , Ovary/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Oocytes/metabolism , Corpus Luteum/metabolism , Extracellular Vesicles/genetics , Gene Expression
6.
Theriogenology ; 208: 109-118, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37311262

ABSTRACT

Each living organism is unique because of the lipid identity of its organelles. The diverse distribution of these molecules also contributes to the role of each organelle in cellular activity. The lipid profiles of whole embryos are well documented in the literature. However, this approach can often lead to the loss of relevant information at the subcellular and consequently, metabolic levels, hindering a deeper understanding of key physiological processes during preimplantation development. Therefore, we aimed to characterize four organelles in vitro-produced bovine embryos: lipid droplets (LD), endoplasmic reticulum (ER), mitochondria (MIT), and nuclear membrane (NUC), and evaluate the contribution of the lipid species to each organelle evaluated. Expanded blastocysts were subjected to cell organelle isolation. Thereafter, lipid extraction from cell organelles and lipid analysis using the Multiple Reaction Monitoring (MRM) profiling method were performed. The LD and ER displayed a greater number of lipids (Phosphatidylcholine - PC, Ceramide - Cer, and Sphingomielin - SM) with high signal-to-noise intensities. This result is due to the high rate of biosynthesis, lipid distribution, and ability to store and recycle lipid species of these organelles. The NUC had a more distinct lipid profile than the other three organelles, with high relative intensities of PC, SM, and triacylglycerols (TG), which is consistent with its high nuclear activity. MIT had an intermediate profile that was close to that of LD and ER, which aligns with its autonomous metabolism for some classes of phospholipids (PL). Our study revealed the lipid composition of each organelle studied, and the roles of these lipids could be associated with the characteristic organellar activity. Our findings highlight the lipid species and classes that are relevant for the homeostasis and function of each associated organelle and provide tentative biomarkers for the determination of in vitro embryonic development and quality.


Subject(s)
Endoplasmic Reticulum , Mitochondria , Female , Pregnancy , Cattle , Animals , Lipid Droplets , Blastocyst , Ceramides
7.
PLoS One ; 18(4): e0284809, 2023.
Article in English | MEDLINE | ID: mdl-37083878

ABSTRACT

Despite the advances in in vitro embryo production (IVP) over the years, the technique still has limitations that need to be overcome. In cell cultures, it is already well established that three-dimensional culture techniques are more physiological and similar to the in vivo development. Liquid marble (LM) is a three-dimensional system based on the use of a hydrophobic substance to create in vitro microbioreactors. Thus, we hypothesized that the LM system improves bovine in vitro oocyte maturation and embryo culture. In experiment I, bovine cumulus-oocyte complexes (COCs) were placed for in vitro maturation for 22h in two different groups: control (conventional 2D culture) and LM (three-dimensional culture). We found that oocyte nuclear maturation was not altered by the LM system, however it was observed a decrease in expression of genes important in the oocyte maturation process in cumulus cells of LM group (BCL2, EIF4E, and GAPDH). In experiment II, the COCs were conventionally matured and fertilized, and for culture, they were divided into LM or control groups. There was a decrease in blastocyst rate and cell counting, a down-regulation of miR-615 expression, and an increase in the DNA global methylation and hydroxymethylation in embryos of LM group. Therefore, for the bovine in vitro embryo production, this specific three-dimensional system did not present the advantages that we expected, but demonstrated that the embryos changed their development and epigenetics according to the culture system.


Subject(s)
In Vitro Oocyte Maturation Techniques , Oocytes , Female , Animals , Cattle , In Vitro Oocyte Maturation Techniques/methods , Oocytes/metabolism , Oogenesis/genetics , Cumulus Cells/metabolism , Embryo, Mammalian , Blastocyst , Fertilization in Vitro/veterinary , Fertilization in Vitro/methods , Embryonic Development/physiology
8.
Int J Mol Sci ; 24(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36982598

ABSTRACT

Preterm labor (PTL) and preterm premature rupture of membranes (PPROM) lead to high perinatal morbidity/mortality rates worldwide. Small extracellular vesicles (sEV) act in cell communication and contain microRNAs that may contribute to the pathogenesis of these complications. We aimed to compare the expression, in sEV from peripheral blood, of miRNAs between term and preterm pregnancies. This cross-sectional study included women who underwent PTL, PPROM, and term pregnancies, examined at the Botucatu Medical School Hospital, SP, Brazil. sEV were isolated from plasma. Western blot used to detect exosomal protein CD63 and nanoparticle tracking analysis were performed. The expression of 800 miRNAs was assessed by the nCounter Humanv3 miRNA Assay (NanoString). The miRNA expression and relative risk were determined. Samples from 31 women-15 preterm and 16 term-were included. miR-612 expression was increased in the preterm groups. miR-612 has been shown to increase apoptosis in tumor cells and to regulate the nuclear factor κB inflammatory pathway, processes involved in PTL/PPROM pathogenesis. miR-1253, miR-1283, miR378e, and miR-579-3p, all associated with cellular senescence, were downregulated in PPROM compared with term pregnancies. We conclude that miRNAs from circulating sEV are differentially expressed between term and preterm pregnancies and modulate genes in pathways that are relevant to PTL/PPROM pathogenesis.


Subject(s)
Extracellular Vesicles , Fetal Membranes, Premature Rupture , MicroRNAs , Obstetric Labor, Premature , Premature Birth , Pregnancy , Humans , Female , Infant, Newborn , Premature Birth/genetics , MicroRNAs/genetics , Cross-Sectional Studies , Fetal Membranes, Premature Rupture/genetics , Obstetric Labor, Premature/genetics , Obstetric Labor, Premature/metabolism , Extracellular Vesicles/metabolism
9.
PLoS One ; 18(1): e0280195, 2023.
Article in English | MEDLINE | ID: mdl-36626404

ABSTRACT

Aiming to evaluate the effects of increased body energy reserve (BER) in Nellore cows' reproductive efficiency, cows were fed with different nutritional plans to obtain animals with high BER (HBER; Ad libitum diet) and moderate BER (MBER: cows fed 70% of HBER group ingestion). To evaluate the BER, cows were weekly weighted and evaluated for subcutaneous fat thickness and insulin serum concentration along the experimental period. At the end of the experimental period, animals were submitted to estrous synchronization and artificial insemination. Animals were slaughtered approximately 120 h after ovulation induction and the reproductive tracts were collected for embryo recovery and samples collection. Cumulus-oocyte-complexes (COC) and follicular fluid were collected from 3-6 mm in diameter ovarian follicles to perform miRNA analysis of cumulus cells (CC) and extracellular vesicles from follicular fluid (EV FF). As expected, differences were observed among MBER and HBER groups for body weight, fat thickness, and insulin serum concentration. HBER animals showed lower ovulation and embryo recovery rates compared to MBER animals. Different miRNAs were found among CC and EV FF within groups, suggesting that the BER may influence follicular communication. This suggests that small follicles (3-6 mm diameter) are already under BER effects, which may be greater on later stages of follicular development.


Subject(s)
Insulins , MicroRNAs , Female , Cattle , Animals , MicroRNAs/genetics , MicroRNAs/pharmacology , Ovarian Follicle , Oocytes , Follicular Fluid , Progesterone
10.
Anim Reprod ; 19(4): e20220063, 2022.
Article in English | MEDLINE | ID: mdl-36425401

ABSTRACT

Extracellular vesicles (EVs) derived from stem cells (SCs) have regenerative potential and the possibility of being used in treating chronic diseases. EVs present lower risk of tumorigenicity and easily to isolation and storage. Therefore, this research aims to compare the morphological characteristics of the EVs (up to 150nm) derived from stem cells obtained from canine amniotic membranes in different passages during the in vitro culture. For this, cells from the amniotic membranes were isolated, cultured, and characterized. In order to answer our aim, the number of cells was normalized at each passage to generate conditioned media for EVs separation. The cells were differentiated into adipogenic, chondrogenic, and osteogenic tissue, to characterize these cells as mesenchymal stem cells (MSC). Moreover, flow cytometry analysis was performed and showed that the MSC were positive for CD90, CD105 and negative for CD34, CD45, mesenchymal and hematopoietic markers, respectively. For EVs analysis, MSC in different passages (P0-P2) were culture until 80% of confluence, then the medium was replaced by EVs depleted medium. After 48h, culture medium was collected and centrifuged to separate EVs, followed by nanoparticle tracking analysis. The EVs were also characterized by western blot and transmission electron microscopy (TEM). EVs were positive for Alix and negative for Cytochrome C as well as presented the traditional cup-shape by transmission electronic microscopy. Our results demonstrated that the concentration in the different passages was increased in P0 compared to P1 and P2 (p<0.05). No differences were found in EVs size (P0=132nm, P1=130nm and P2=120nm). Together, these results demonstrate that P0 of MSC is enriched of EVs when compared to later passages, suggesting that this passage would be the best to be applied in pre-clinical tests. Despite that, more studies are necessary to identify the EVs content and how the cells will respond to treatment with them.

11.
J Anim Sci Biotechnol ; 13(1): 116, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36280872

ABSTRACT

BACKGROUND: In vitro production of bovine embryos is a well-established technology, but the in vitro culture (IVC) system still warrants improvements, especially regarding embryo quality. This study aimed to evaluate the effect of extracellular vesicles (EVs) isolated from oviductal (OF) and uterine fluid (UF) in sequential IVC on the development and quality of bovine embryos. Zygotes were cultured in SOF supplemented with either BSA or EVs-depleted fetal calf serum (dFCS) in the presence (BSA-EV and dFCS-EV) or absence of EVs from OF (D1 to D4) and UF (D5 to D8), mimicking in vivo conditions. EVs from oviducts (early luteal phase) and uterine horns (mid-luteal phase) from slaughtered heifers were isolated by size exclusion chromatography. Blastocyst rate was recorded on days 7-8 and their quality was assessed based on lipid contents, mitochondrial activity and total cell numbers, as well as survival rate after vitrification. Relative mRNA abundance for lipid metabolism-related transcripts and levels of phosphorylated hormone-sensitive lipase (pHSL) proteins were also determined. Additionally, the expression levels of 383 miRNA in OF- and UF-EVs were assessed by qRT-PCR. RESULTS: Blastocyst yield was lower (P < 0.05) in BSA treatments compared with dFCS treatments. Survival rates after vitrification/warming were improved in dFCS-EVs (P < 0.05). EVs increased (P < 0.05) blastocysts total cell number in dFCS-EV and BSA-EV compared with respective controls (dFCS and BSA), while lipid content was decreased in dFCS-EV (P < 0.05) and mitochondrial activity did not change (P > 0.05). Lipid metabolism transcripts were affected by EVs and showed interaction with type of protein source in medium (PPARGC1B, LDLR, CD36, FASN and PNPLA2, P < 0.05). Levels of pHSL were lower in dFCS (P < 0.05). Twenty miRNA were differentially expressed between OF- and UF-EVs and only bta-miR-148b was increased in OF-EVs (P < 0.05). CONCLUSIONS: Mimicking physiological conditions using EVs from OF and UF in sequential IVC does not affect embryo development but improves blastocyst quality regarding survival rate after vitrification/warming, total cell number, lipid content, and relative changes in expression of lipid metabolism transcripts and lipase activation. Finally, EVs miRNA contents may contribute to the observed effects.

12.
Pharmaceutics ; 14(10)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36297442

ABSTRACT

Despite all the progress in the field of liposomes and nanoparticles for applications as drug and gene delivery systems, the specific targeting and immune system escape capabilities of these systems are still limited. Biomimetic nanovesicles emerged as a strategy to overcome these and other limitations associated with synthetic carriers, such as short circulation time, cytotoxicity, and difficulty in crossing biological barriers, since many of the desirable abilities of drug delivery systems are innate characteristics of biological vesicles. Thus, the question arises: would biomimetic nanovesicles be responsible for addressing these advances? It is currently known that biomimetic nanovesicles (BNV) can combine the intrinsic advantages of natural materials with the well-known production methods and controllability of synthetic systems. Besides, the development of the biotechnology and nanotechnology fields has provided a better understanding of the functionalities of biological vesicles and the means for the design and production of biomimetic nanovesicles (BNV). Based on this, this work will focus on tracking the main research on biomimetic nanovesicles (BNV) applied as drug and gene delivery systems, and for vaccines applications. In addition, it will describe the different sources of natural vesicles, the technical perspectives on obtaining them, and the possibility of their hybridization with synthetic liposomes.

13.
Sci Rep ; 12(1): 16439, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36180561

ABSTRACT

Adipose tissue is a metabolic and endocrine organ, and its adipocytes can synthesize and secrete extracellular vesicles (EVs), thus allowing intercellular communication. EVs are nanoparticles that transport lipids, proteins, metabolites, and nucleic acids (mRNA and microRNAs). MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression. miR-132, miR-26b, and miR-155 are associated with obesity, lipid metabolism and adipogenesis. The aim of this study was to evaluate the enriched EVs fraction containing miRNAs (miR-132, miR-26b, and miR-155) in serum from obese female dogs. Thirty-two neutered females in good general condition were recruited, including 21 obese and 11 healthy controls. The initial evaluation of the females included a general physical examination and laboratory tests. Small EVs (sEVs) were isolated from whole blood by serial centrifugation and ultracentrifugation, and nanoparticle analysis was used to determine the size and concentration of serum sEVs. miRNAs were extracted from sEVs enriched fraction and analyzed by real-time polymerase chain reaction. Obese female dogs with hypertriglyceridemia showed an increase in the sEVs concentration and in the expression of miR-132 and miR-26b in sEVs enriched fraction. No changes were observed in the group of obese female dogs with normal serum biochemical profile and in relation to miR-155 expression. These results suggest that obese female dogs with hypertriglyceridemia may present alterations in sEVs and in the expression of miRNAs related to lipid metabolism and adipogenesis.


Subject(s)
Extracellular Vesicles , Hypertriglyceridemia , MicroRNAs , Animals , Dogs , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Female , Hypertriglyceridemia/metabolism , Lipids , MicroRNAs/metabolism , Obesity/genetics , Obesity/metabolism , RNA, Messenger/metabolism
14.
Ciênc. rural (Online) ; 52(10): e20210171, 2022. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1364719

ABSTRACT

LIN28 is a RNA-binding protein including two highly conserved homologous, LIN28A and LIN28B. Proto-oncogenes such as LIN28A and LIN28B are generally targeted by the let-7 miRNAs in different types of human cancers. Here, we determined the expression of LIN28A in canine mammary tumor samples and the LIN28/let-7 pathway in canine mammary cell lines. In those cell lines, we identified a functional LIN28/let-7 pathway which exhibited high expression of let-7 members and low expression of its targets, including LIN28A and LIN28B. However, the mammary carcinoma tissue samples showed a frequent expression of LIN28A being expressed mainly in the epithelial cells. No association was observed between LIN28A expression and histopathological classification and grade, TNM and survival time. Our results suggested a possible role of the LIN28A protein in the development of canine mammary carcinomas due to the high frequency observed in the tumor samples (28 of 32). The in vitro experiments suggested that the LIN28/let-7 pathway is active in the tumor cells evaluated. However, more studies are necessary to elucidate the exact role of LIN28/let-7 pathway in canine mammary carcinomas.


LIN28 é uma proteína de ligação ao RNA, com duas formas homólogas altamente conservadas, LIN28A e LIN28B. Os proto-oncogenes LIN28A e LIN28B são regulados pela família de miRNAs let-7 em diferentes tipos de cânceres em humanos. No presente trabalho, o objetivo foi determinar a expressão de LIN28A em amostras de tumor mamário de cadelas e a via LIN28/let-7 em linhagens celulares mamárias caninas. Nestas linhagens, através das técnicas de qPCR e RNAseq, foi identificado que a via LIN28/let-7 apresenta-se funcional, com alta expressão dos membros da família let-7 e baixa expressão de seus alvos, entre eles LIN28A e LIN28B. No entanto, as amostras de tecidos de carcinomas mamários caninos demonstraram expressão frequente de LIN28A, sendo observada principalmente em células epiteliais. Não foram observadas associações entre expressão de LIN28A com classificação e gradação histopatológicas, TNM e tempo de sobrevida. Nossos resultados sugerem uma possível relação da proteína LIN28A no desenvolvimento de carcinomas mamários caninos devido à alta frequência observada nas amostras tumorais (28 de 32). Os experimentos in vitro sugerem que a via LIN28/let-7 é ativa nas linhagens celulares caninas avaliadas. Entretanto, estudos funcionais ainda são necessários para elucidar a função exata da via LIN28/let-7 nos carcinomas mamários caninos.


Subject(s)
Animals , Female , Dogs , Mammary Neoplasms, Animal/genetics , RNA-Binding Proteins/analysis , MicroRNAs/analysis , Polymerase Chain Reaction
15.
Theriogenology ; 174: 1-8, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34403846

ABSTRACT

Cell communication within the ovarian follicle is crucial during folliculogenesis to assure an ideal environment for the oocyte to achieve full developmental competence. Intercellular communication is facilitated by the presence of follicular fluid, which mediates the transfer of signaling molecules. Recently, extracellular vesicles (exosomes and microvesicles) containing mRNAs, miRNAs and proteins were described in mammalian follicular fluid. Besides these molecules, extracellular vesicles (EVs) can mediate the transfer of lipids that can act as signal transducers activating second messengers and modulating intracellular pathways. Our goal was to determine the lipid profile of exosomes (small extracellular vesicles) and microvesicles (large extracellular vesicles) from bovine ovarian follicles containing oocytes with different developmental capabilities to verify potential relationships to competence. Using mass spectrometry, we examined the lipid content of EVs present in the follicular fluid of follicles enclosing oocytes that were either unable to cleave (NCLEAVE), arrested at cleavage stage (CLEAVE), or developed to the blastocyst stage (BLAST) after parthenogenetic activation. Although most of the 514 lipids identified in the follicular fluid EVs were common among all groups, 10 exosome-derived lipids and 15 microvesicle-derived lipids were present exclusively in the BLAST group, suggesting a potential relationship with developmental competence. Therefore, our data indicate that the EVs present in follicular fluid of antral follicles of similar morphology contain lipids that may be used as biomarkers associated with the developmental capability of the oocyte to develop to the blastocyst stage.


Subject(s)
Extracellular Vesicles , Oogenesis , Animals , Cattle , Cell Communication , Female , Follicular Fluid , Lipids , Oocytes
16.
Anim Reprod ; 18(1): e20200048, 2021 May 10.
Article in English | MEDLINE | ID: mdl-34122650

ABSTRACT

This review focuses on the innate immune events modulated by conceptus signaling during early pregnancy in ruminants. Interferon-tau (IFN-τ) plays a role in the recognition of pregnancy in ruminants, which involves more than the inhibition of luteolytic pulses of PGF2α to maintain corpus luteum function. For successful pregnancy establishment, the allogenic conceptus needs to prevent rejection by the female. Therefore, IFN-τ exerts paracrine and endocrine actions to regulate the innate immune system and prevent conceptus rejection. Additionally, other immune regulators work in parallel with IFN-τ, such as the pattern recognition receptors (PRR). These receptors are activated during viral and bacterial infections and in early pregnancy, but it remains unknown whether PPR expression and function are controlled by IFN-τ. Therefore, this review focuses on the main components of the innate immune response that are involved with early pregnancy and their importance to avoid conceptus rejection.

17.
Front Vet Sci ; 8: 639752, 2021.
Article in English | MEDLINE | ID: mdl-33748215

ABSTRACT

Early embryonic development occurs in the oviduct, where an ideal microenvironment is provided by the epithelial cells and by the oviductal fluid produced by these cells. The oviductal fluid contains small extracellular vesicles (sEVs), which through their contents, including microRNAs (miRNAs), can ensure proper cell communication between the mother and the embryo. However, little is known about the modulation of miRNAs within oviductal epithelial cells (OECs) and sEVs from the oviductal fluid in pregnant cows. In this study, we evaluate the miRNAs profile in sEVs from the oviductal flushing (OF-sEVs) and OECs from pregnant cows compared to non-pregnant, at 120 h after ovulation induction. In OF-sEVs, eight miRNAs (bta-miR-126-5p, bta-miR-129, bta-miR-140, bta-miR-188, bta-miR-219, bta-miR-345-3p, bta-miR-4523, and bta-miR-760-3p) were up-regulated in pregnant and one miRNA (bta-miR-331-5p) was up-regulated in non-pregnant cows. In OECs, six miRNAs (bta-miR-133b, bta-miR-205, bta-miR-584, bta-miR-551a, bta-miR-1193, and bta-miR-1225-3p) were up-regulated in non-pregnant and none was up-regulated in pregnant cows. Our results suggest that embryonic maternal communication mediated by sEVs initiates in the oviduct, and the passage of gametes and the embryo presence modulate miRNAs contents of sEVs and OECs. Furthermore, we demonstrated the transcriptional levels modulation of selected genes in OECs in pregnant cows. Therefore, the embryonic-maternal crosstalk potentially begins during early embryonic development in the oviduct through the modulation of miRNAs in OECs and sEVs in pregnant cows.

18.
Genes (Basel) ; 12(1)2021 01 06.
Article in English | MEDLINE | ID: mdl-33419037

ABSTRACT

MicroRNAs (miRNAs) are key regulators of gene expression, potentially affecting several biological processes, whose function can be altered by sequence variation. Hence, the integration of single nucleotide polymorphisms (SNP) and miRNAs can explain individual differences in economic traits. To provide new insights into the effects of SNPs on miRNAs and their related target genes, we carried out a multi-omic analysis to identify SNPs in miRNA mature sequences (miR-SNPs) associated with fatty acid (FA) composition in the Nelore cattle. As a result, we identified 3 miR-SNPs in different miRNAs (bta-miR-2419-3p, bta-miR-193a-2, and bta-miR-1291) significantly associated with FA traits (p-value < 0.02, Bonferroni corrected). Among these, the rs110817643C>T, located in the seed sequence of the bta-miR-1291, was associated with different ω6 FAs, polyunsaturated FA, and polyunsaturated:saturated FA ratios. Concerning the other two miR-SNPs, the rs43400521T>C (located in the bta-miR-2419-3p) was associated with C12:0 and C18:1 cis-11 FA, whereas the rs516857374A>G (located in the bta-miR-193a-2) was associated with C18:3 ω6 and ratio of ω6/ω3 traits. Additionally, to identify potential biomarkers for FA composition, we described target genes affected by these miR-SNPs at the mRNA or protein level. Our multi-omics analysis outlines the effects of genetic polymorphism on miRNA, and it highlights miR-SNPs and target candidate genes that control beef fatty acid composition.


Subject(s)
Fatty Acids/analysis , MicroRNAs/genetics , Muscle, Skeletal/metabolism , Red Meat/analysis , Animal Husbandry , Animals , Brazil , Breeding , Cattle , Fatty Acids/metabolism , Female , Gene Expression Regulation , Lipid Metabolism/genetics , Male , MicroRNAs/metabolism , Phenotype , Polymorphism, Single Nucleotide
19.
Theriogenology ; 161: 26-40, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33278692

ABSTRACT

Scrotal heat stress affects spermatogenesis and impairs male fertility by increasing sperm morphological abnormalities, oxidative stress and DNA fragmentation. While sperm morpho-functional changes triggered by scrotal heat stress are well described, sperm molecular alterations remain unknown. Recently, spermatozoa were described as accumulating miRNAs during the last steps of spermatogenesis and through epididymis transit, mainly by communication with small extracellular vesicles (sEVs). Herein, the aim was to investigate the impact of scrotal heat stress in miRNAs profile of sperm, as well as, seminal plasma sEVs. Six Nelore bulls (Bos indicus) were divided into two groups: Control (CON; n = 3) and Scrotal Heat Stress (SHS; n = 3; scrotal heat stressed during 96 h by scrotal bags). The day that the scrotal bags were removed from SHS group was considered as D0 (Day zero). Seminal plasma sEVs were isolated from semen samples collected seven days after heat stress (D+7) to evaluate sEVs diameter, concentration, and 380 miRNA levels. Sperm morpho-functional features and profile of 380 miRNAs were evaluated from semen collected 21 days after heat stress (D+21). As a control, sEVs and sperm were analyzed seven days before heat stress (D-7). Only semen parameters that were not significantly different (P > 0.05) among bulls on D-7 were addressed on D+7 and D+21. While no alterations in diameter and concentration were detected in sEVs on D+7 between CON and SHS groups, three sEVs-miRNAs (miR-23b-5p, -489 and -1248) were down-regulated in SHS bulls compared to CON on D+7; other three (miR-126-5p, -656 and -1307) displayed a tendency (0.05 < P < 0.10) to be altered. Sperm oxidative stress was higher, and the level of 21 sperm miRNAs was altered (18 down-, 3 up-regulated) in SHS bulls compared to CON on D+21. Functional analysis indicated that target genes involved in transcription activation, as well as cell proliferation and differentiation were related to the 18 down-regulated sperm miRNAs (miR-9-5p, -15a, -18a, -20b, -30a-5p, -30b-5p, -30d, -30e-5p -34b, -34c, -106b, -126-5p, -146a, -191, -192, -200b, -335 and -449a). Thus, the scrotal heat stress probably impacted testicular and epididymis functions by reducing the levels of a substantial proportion of sEVs and sperm miRNAs. Our findings suggest that miR-126-5p was possibly trafficked between sEVs and sperm and provide new insights on the mechanism by which sperm acquire miRNAs in the last stages of spermatogenesis and sperm maturation in cattle.


Subject(s)
Extracellular Vesicles , MicroRNAs , Animals , Cattle , Heat-Shock Response , Male , MicroRNAs/genetics , Semen , Spermatozoa
20.
Anim Reprod ; 16(1): 31-38, 2020 May 22.
Article in English | MEDLINE | ID: mdl-33299476

ABSTRACT

Intercellular communication is an essential mechanism for development and maintenance of multicellular organisms. Extracellular vesicles (EVs) were recently described as new players in the intercellular communication. EVs are double-membrane vesicles secreted by cells and are classified according to their biosynthesis, protein markers and morphology. These extracellular vesicles contain bioactive materials such as miRNA, mRNA, protein and lipids. These characteristics permit their involvement in different biological processes. Reproductive physiology is complex and involves constant communication between cells. Different laboratories have described the presence of EVs secreted by ovarian follicular cells, oviductal cells, in vitro produced embryos and by the endometrium, suggesting that EVs are involved in the development of gametes and embryos, in animals and humans. Therefore, is important to understand physiological mechanisms and contributions of EVs in female reproduction in order to develop new tools to improve in vivo reproductive events and assisted reproductive techniques (ARTs). This review will provide the current knowledge related to EVs in female reproductive tissues and their role in ARTs.

SELECTION OF CITATIONS
SEARCH DETAIL
...