Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Food Microbiol ; 416: 110659, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38461732

ABSTRACT

Fungi are a problem for viticulture as they can lead to deterioration of grapes and mycotoxins production. Despite the widespread use of synthetic fungicides to control fungi, their impact on the agricultural ecosystem and human health demand safer and eco-friendly alternatives. This study aimed to produce, characterize and assess the antifungal activity of carvacrol loaded in nanocapsules of Eudragit® and chia mucilage as strategy for controlling Botrytis cinerea, Aspergillus flavus, Aspergillus carbonarius, and Aspergillus niger. Eudragit® and chia mucilage were suitable wall materials, as both favored the encapsulation of carvacrol into nanometric diameter particles. Fourier Transform Infrared Spectroscopy (FTIR) analysis suggested a successful incorporation of carvacrol into both nanocapsules, which was confirmed by presenting a good encapsulation efficiency and loading capacity. Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) analyses revealed adequate thermal resistance. All fungi were sensible to carvacrol treatments and B. cinerea was the most sensitive compared to the Aspergillus species. Lower concentrations of encapsulated carvacrol than the unencapsulated form were required to inhibit fungi in the in vitro and grape assays. Additionally, lower levels of carvacrol (unencapsulated or encapsulated) were used to inhibit fungal growth and ochratoxin synthesis on undamaged grapes in comparison to those superficially damaged, highlighting the importance of management practices designed to preserve berry integrity during cultivation, storage or commercialization. When sublethal doses of carvacrol were used, the growth of A. niger and A. carbonarius was suppressed by at least 45 %, and ochratoxins were not found. The nanoencapsulation of carvacrol using Eudragit® and chia mucilage has proven to be an alternative to mitigate the problems with fungi and mycotoxins faced by the grape and wine sector.


Subject(s)
Cymenes , Mycotoxins , Nanocapsules , Ochratoxins , Polymethacrylic Acids , Vitis , Humans , Vitis/microbiology , Antifungal Agents/metabolism , Ecosystem , Mycotoxins/analysis , Aspergillus niger
2.
Int J Food Microbiol ; 415: 110644, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38417280

ABSTRACT

Fungal control strategies based on the use of Bacillus have emerged in agriculture as eco-friendly alternatives to replace/reduce the use of synthetic pesticides. Bacillus sp. P1 was reported as a new promising strain for control of Aspergillus carbonarius, a known producer of ochratoxin A, categorized as possible human carcinogen with high nephrotoxic potential. Grape quality can be influenced by vineyard management practices, including the use of fungal control agents. The aim of this study was to evaluate, for the first time, the quality parameters of Chardonnay grapes exposed to an antifungal Bacillus-based strategy for control of A. carbonarius, supporting findings by genomic investigations. Furthermore, genomic tools were used to confirm that the strain P1 belongs to the non-pathogenic species Bacillus velezensis and also to certify its biosafety. The genome of B. velezensis P1 harbors genes that are putatively involved in the production of volatiles and hydrolytic enzymes, which are responsible for releasing the free form of aroma compounds. In addition to promote biocontrol of phytopathogenic fungi and ochratoxins, the treatment with B. velezensis P1 did not change the texture (hardness and firmness), color and pH of the grapes. Heat map and hierarchical clustering analysis (HCA) of volatiles evaluated by GC/MS revealed that Bacillus-treated grapes showed higher levels of compounds with a pleasant odor descriptions such as 3-hydroxy-2-butanone, 2,3-butanediol, 3-methyl-1-butanol, 3,4-dihydro-ß-ionone, ß-ionone, dihydroactinidiolide, linalool oxide, and ß-terpineol. The results of this study indicate that B. velezensis P1 presents desirable properties to be used as a biocontrol agent.


Subject(s)
Aspergillus , Bacillus , Norisoprenoids , Ochratoxins , Vitis , Humans , Vitis/microbiology , Bacillus/genetics , Bacillus/chemistry , Genomics
3.
Int J Food Microbiol ; 389: 110107, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36731201

ABSTRACT

Bacillus-based biocontrol agents have emerged as a strategy to eliminate or reduce the use of synthetic fungicides that are detrimental to health and the environment. In vineyards, a special concern arises from the control of Aspergillus carbonarius, a fungus known for its potential to produce ochratoxins. Ochratoxin A (OTA) is the most toxic form among ochratoxins and its maximum limit in wine has been established in Europe and Brazil as 2 µg/kg. Wine quality, especially the volatile profile, may be influenced by the antifungal strategies, since fungicide residues are transferred from grapes to must during winemaking. The objective of this study was to evaluate, for the first time, the impact of a biocontrol strategy containing Bacillus velezensis P1 on the volatile profile and occurrence of ochratoxins when grapes infected with A. carbonarius were used in winemaking. The evaluation of ochratoxins was carried out by liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QToF-MS), and volatile compounds were analyzed using comprehensive two-dimensional gas chromatography coupled to quadrupole mass spectrometry (GC × GC/qMS). Six ochratoxins were identified in must prepared with Chardonnay grapes inoculated with A. carbonarius (ochratoxin α, ochratoxin ß, ochratoxin α methyl-ester, ochratoxin α amide, N-formyl-ochratoxin α amide and OTA). Although winemaking causes a decrease in the levels of all forms of ochratoxins, the co-occurrence of these mycotoxins was verified in wine made with grapes containing A. carbonarius. B. velezensis P1 prevented the occurrence of ochratoxins in must, ensuring the safety of wines. Regarding the volatile profile, a predominant presence of terpenic compounds was verified in samples treated with B. velezensis when compared with those not treated with the biocontrol strategy, whereas the presence of A. carbonarius resulted in a higher concentration of volatile compounds with an odor described as fatty/waxy, possibly compromising wine quality. Therefore, B. velezensis P1 is a new biofungicide possibility to produce ochratoxin-free grapes and high-quality wines.


Subject(s)
Ochratoxins , Vitis , Wine , Vitis/microbiology , Food Contamination/prevention & control , Food Contamination/analysis , Wine/microbiology , Ochratoxins/analysis , Europe , Chromatography, Liquid
4.
Article in English | MEDLINE | ID: mdl-34702135

ABSTRACT

Bacillus spp. have been used as a biocontrol strategy to eliminate/reduce toxic fungicides in viticulture. Furthermore, the presence of fungi that are resistant to commonly used products is frequent, highlighting the need for new biocontrol strains. Aspergillus carbonarius can produce ochratoxins, including ochratoxin A (OTA), which has a regulatory maximum allowable limit for grape products. The purpose of this study was to assess the ability of four Amazonian strains of Bacillus (P1, P7, P11, and P45) to biocontrol A. carbonarius and various forms of ochratoxins in grapes. Berries treated with strain P1 presented no fungal colonies (100% reduction), while P7, P11 and P45 strains caused a reduction of 95, 95 and 61% on fungal counts, respectively. Six forms of ochratoxin were found in the grapes inoculated with A. carbonarius, including ochratoxin α, ochratoxin ß, ochratoxin α methyl-ester, ochratoxin α amide, N-formyl-ochratoxin α amide, and OTA. Four of these ochratoxin forms (ochratoxin ß, ochratoxin α methyl-ester, ochratoxin α amide, N-formyl-ochratoxin α amide) are reported for the first time in grapes. These ochratoxins were identified using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QToF-MS). All Bacillus strains inhibited the synthesis of OTA, which is the most toxic form of ochratoxin. No ochratoxin form was found when P1 and P7 were used. Although some forms of ochratoxin were detected in grapes treated with Bacillus spp. P11 and P45, the levels decreased by 97%. To our knowledge, this is the first report on the inhibition of Aspergillus carbonarius-derived ochratoxin by Bacillus species. P1 strain, identified as Bacillus velezensis, was found to be the most promising for completely inhibiting fungal growth and production of all ochratoxins.


Subject(s)
Aspergillus/chemistry , Bacillus/chemistry , Fungicides, Industrial/analysis , Ochratoxins/analysis , Vitis/chemistry , Chromatography, High Pressure Liquid , Fruit/chemistry , Tandem Mass Spectrometry
5.
Food Res Int ; 141: 110145, 2021 03.
Article in English | MEDLINE | ID: mdl-33642011

ABSTRACT

Dehydration of grapes has been used in various regions of the world to produce special wines, aiming to add value to oenological products. Post-harvest dehydration in rooms may be carried out regardless of weather conditions, without the additional cost of a specific infrastructure, in addition to the benefits of protecting the grapes from damages and environmental pollution. The objective of this study was to verify, for the first time, the impact of the dehydration in a naturally ventilated room on the quality of Merlot grapes. Physicochemical characteristics, mycobiota, occurrence of mycotoxins, volatile profile and phenolic composition of grapes were monitored on 7th, 14th and 21st days of dehydration (weight loss of 10, 20 and 27%, respectively). A decrease in aw (6%), pH (4%), and berry hardness (58%), along with an increase in total soluble solid content (15%) were observed during dehydration. The presence of Pestalotiopsis clavispora, Neopestalotiopsis clavispora, Colletotrichum siamense and Alternaria porri was favored during the dehydration process, while a decrease in the occurrence of Aspergillus niger and Phanerochaete sp. was verified. A. niger isolates showed no potential to produce forms of ochratoxins. These toxins were also not found in the grape samples. Regarding the volatile profile, 1-hexanal, 2-hexenal, and 1-octanal gave rise to the corresponding alcohols during dehydration, such as 1-hexanol, 2-hexen-1-ol, and 1-octanol. Acids (hexanoic, decanoic, and 3-hexenoic) resulted in the respective ethyl esters (hexanoate, decanoate, and ethyl 3-hexenoate) during dehydration. Terpenes as limonene, myrcene, and geraniol decreased throughout dehydration, while their biotransformation products (α-terpineol, 6-methyl-5-hepten-2-one, and linalool, respectively) had an increase in concentration. The phenolic content oscillated during dehydration, with an emphasis on increased levels of four hydroxybenzoic acids (ethyl gallate, p-hydroxybenzoic acid, gallic acid-hexose, and gallic acid), two hydroxycinnamic acids (caffeic acid and caftaric acid), two flavonols (kaempeferol galactoside and quercetin) and two anthocyanins (peonidin 3-O-hexoside and delphinidin 3-O-hexoside). Grapes of satisfactory quality were produced by dehydration in a naturally ventilated room. Even small wine producers can be encouraged to implement this procedure for the diversification of oenological products, as it has no costs related to the implementation of chambers/tunnels.


Subject(s)
Ochratoxins , Vitis , Wine , Alternaria , Ascomycota , Colletotrichum , Dehydration , Ochratoxins/analysis , Wine/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...