Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 90(3): 1115-22, 1999 Mar.
Article in English | MEDLINE | ID: mdl-10218810

ABSTRACT

Direct injections into the cerebroventricles have been extensively utilized in neurophysiological studies. Mapping the distribution of injectate after intracerebroventricular injection has been made only by post mortem analysis, and the dynamic distribution of injectate within the brain has not been well characterized. In this report, we apply contrast-enhanced magnetic resonance imaging to study the pharmacokinetics and extent of non-ionic gadodiamide transport into brain tissue in vivo after intracerebroventricular administration. The results indicate that intracerebroventricular injectate travels quickly throughout the ventricular system from the lateral ventricular site of injection to the fourth ventricle and foramina of Luschka and Magendie within 2 min. After this, the signal intensity begins to increase in the periventricular and paraventricular brain parenchyma. Contrast enhancement is visible 2 mm into the brain tissue from the ventricles. Quantitative analysis of the data shows that the transport of gadodiamide across the ependymal layer that lines the cerebrospinal fluid space characterized a rate constant of 0.066+/-0.017 min(-1). These results provide a better understanding of chemical transport and diffusion following direct injection into the cerebroventricles. They provide information on the in vivo dynamics of injectate after intracerebroventricular administration, and show that contrast enhanced magnetic resonance imaging may be used to more precisely define the target sites of chemicals after intracerebroventricular administration into the brain.


Subject(s)
Brain/metabolism , Contrast Media/administration & dosage , Contrast Media/pharmacokinetics , Gadolinium DTPA/administration & dosage , Gadolinium DTPA/pharmacokinetics , Animals , Brain/anatomy & histology , Injections, Intraventricular , Magnetic Resonance Imaging , Male , Osmolar Concentration , Rats , Rats, Sprague-Dawley , Tissue Distribution/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...