Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mar Pollut Bull ; 145: 185-199, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31590775

ABSTRACT

Dredging poses a potential threat to coral reefs, yet quantifying impacts is often difficult due to the large spatial footprint of potential effects and co-occurrence of other disturbances. Here we analyzed in situ monitoring data and remotely-sensed sediment plumes to assess impacts of the 2013-2015 Port of Miami dredging on corals and reef habitat. To control for contemporaneous bleaching and disease, we analyzed the spatial distribution of impacts in relation to the dredged channel. Areas closer to dredging experienced higher sediment trap accumulation, benthic sediment cover, coral burial, and coral mortality, and our spatial analyses indicate that >560,000 corals were killed within 0.5 km, with impacts likely extending over 5-10 km. The occurrence of sediment plumes explained ~60% of spatial variability in measured impacts, suggesting that remotely-sensed plumes, when properly calibrated against in situ monitoring data, can reliably estimate the magnitude and extent of dredging impacts.


Subject(s)
Anthozoa , Geologic Sediments , Animals , Coral Reefs , Ecosystem , Environmental Monitoring , Florida
2.
J Exp Biol ; 220(Pt 7): 1192-1196, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28108671

ABSTRACT

Reef corals are sensitive to thermal stress, which induces coral bleaching (the loss of algal symbionts), often leading to coral mortality. However, corals hosting certain symbionts (notably some members of Symbiodinium clade D) resist bleaching when exposed to high temperatures. To determine whether these symbionts are also cold tolerant, we exposed corals hosting either Symbiodinium C3 or D1a to incremental warming (+1°C week-1 to 35°C) and cooling (-1°C week-1 to 15°C), and measured photodamage and symbiont loss. During warming to 33°C, C3 corals were photodamaged and lost >99% of symbionts, while D1a corals experienced photodamage but did not bleach. During cooling, D1a corals suffered more photodamage than C3 corals but still did not bleach, while C3 corals lost 94% of symbionts. These results indicate that photodamage does not always lead to bleaching, suggesting alternate mechanisms exist by which symbionts resist bleaching, and helping explain the persistence of D1a symbionts on recently bleached reefs, with implications for the future of these ecosystems.


Subject(s)
Acclimatization , Anthozoa/physiology , Climate Change , Coral Reefs , Dinoflagellida/physiology , Symbiosis , Animals , Cold Temperature , Hot Temperature , Stress, Physiological
3.
Glob Chang Biol ; 21(1): 236-49, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25099991

ABSTRACT

Mutualistic organisms can be particularly susceptible to climate change stress, as their survivorship is often limited by the most vulnerable partner. However, symbiotic plasticity can also help organisms in changing environments by expanding their realized niche space. Coral-algal (Symbiodinium spp.) symbiosis exemplifies this dichotomy: the partnership is highly susceptible to 'bleaching' (stress-induced symbiosis breakdown), but stress-tolerant symbionts can also sometimes mitigate bleaching. Here, we investigate the role of diverse and mutable symbiotic partnerships in increasing corals' ability to thrive in high temperature conditions. We conducted repeat bleaching and recovery experiments on the coral Montastraea cavernosa, and used quantitative PCR and chlorophyll fluorometry to assess the structure and function of Symbiodinium communities within coral hosts. During an initial heat exposure (32 °C for 10 days), corals hosting only stress-sensitive symbionts (Symbiodinium C3) bleached, but recovered (at either 24 °C or 29 °C) with predominantly (>90%) stress-tolerant symbionts (Symbiodinium D1a), which were not detected before bleaching (either due to absence or extreme low abundance). When a second heat stress (also 32 °C for 10 days) was applied 3 months later, corals that previously bleached and were now dominated by D1a Symbiodinium experienced less photodamage and symbiont loss compared to control corals that had not been previously bleached, and were therefore still dominated by Symbiodinium C3. Additional corals that were initially bleached without heat by a herbicide (DCMU, at 24 °C) also recovered predominantly with D1a symbionts, and similarly lost fewer symbionts during subsequent thermal stress. Increased thermotolerance was also not observed in C3-dominated corals that were acclimated for 3 months to warmer temperatures (29 °C) before heat stress. These findings indicate that increased thermotolerance post-bleaching resulted from symbiont community composition changes, not prior heat exposure. Moreover, initially undetectable D1a symbionts became dominant only after bleaching, and were critical to corals' resilience after stress and resistance to future stress.


Subject(s)
Acclimatization/physiology , Anthozoa/physiology , Coral Reefs , Dinoflagellida/physiology , Hot Temperature , Symbiosis , Analysis of Variance , Animals , Chlorophyll/metabolism , DNA Primers/genetics , Dinoflagellida/genetics , Fluorometry , Polymerase Chain Reaction
4.
Proc Biol Sci ; 279(1738): 2609-18, 2012 Jul 07.
Article in English | MEDLINE | ID: mdl-22367985

ABSTRACT

Some reef-building corals have been shown to respond to environmental change by shifting the composition of their algal symbiont (genus Symbiodinium) communities. These shifts have been proposed as a potential mechanism by which corals might survive climate stressors, such as increased temperatures. Conventional molecular methods suggest this adaptive capacity may not be widespread because few (∼25%) coral species have been found to associate with multiple Symbiodinium clades. However, these methods can fail to detect low abundance symbionts (typically less than 10-20% of the total algal symbiont community). To determine whether additional Symbiodinium clades are present, but are not detected using conventional techniques, we applied a high-resolution, real-time PCR assay to survey Symbiodinium (in clades A-D) from 39 species of phylogenetically and geographically diverse scleractinian corals. This survey included 26 coral species thought to be restricted to hosting a single Symbiodinium clade ('symbiotic specialists'). We detected at least two Symbiodinium clades (C and D) in at least one sample of all 39 coral species tested; all four Symbiodinium clades were detected in over half (54%) of the 26 symbiotic specialist coral species. Furthermore, on average, 68 per cent of all sampled colonies within a given coral species hosted two or more symbiont clades. We conclude that the ability to associate with multiple symbiont clades is common in scleractinian (stony) corals, and that, in coral-algal symbiosis, 'specificity' and 'flexibility' are relative terms: specificity is rarely absolute. The potential for reef corals to adapt or acclimatize to environmental change via symbiont community shifts may therefore be more phylogenetically widespread than has previously been assumed.


Subject(s)
Alveolata/genetics , Alveolata/physiology , Anthozoa/genetics , Anthozoa/physiology , Biodiversity , Climate Change , Ecosystem , Symbiosis/physiology , Adaptation, Physiological , Alveolata/classification , Animals , Anthozoa/classification , Coral Reefs , Phylogeny , Real-Time Polymerase Chain Reaction , Species Specificity
5.
PLoS One ; 6(10): e26914, 2011.
Article in English | MEDLINE | ID: mdl-22046408

ABSTRACT

Coral reefs are declining worldwide due to increased incidence of climate-induced coral bleaching, which will have widespread biodiversity and economic impacts. A simple method to measure the sub-bleaching level of heat-light stress experienced by corals would greatly inform reef management practices by making it possible to assess the distribution of bleaching risks among individual reef sites. Gene expression analysis based on quantitative PCR (qPCR) can be used as a diagnostic tool to determine coral condition in situ. We evaluated the expression of 13 candidate genes during heat-light stress in a common Caribbean coral Porites astreoides, and observed strong and consistent changes in gene expression in two independent experiments. Furthermore, we found that the apparent return to baseline expression levels during a recovery phase was rapid, despite visible signs of colony bleaching. We show that the response to acute heat-light stress in P. astreoides can be monitored by measuring the difference in expression of only two genes: Hsp16 and actin. We demonstrate that this assay discriminates between corals sampled from two field sites experiencing different temperatures. We also show that the assay is applicable to an Indo-Pacific congener, P. lobata, and therefore could potentially be used to diagnose acute heat-light stress on coral reefs worldwide.


Subject(s)
Coral Reefs , Gene Expression Profiling , Hot Temperature/adverse effects , Light/adverse effects , Stress, Physiological/genetics , Actins/genetics , Animals , Biomarkers , Gene Expression Regulation , Heat-Shock Proteins/genetics
6.
Science ; 329(5990): 388, 2010 Jul 23.
Article in English | MEDLINE | ID: mdl-20651134
SELECTION OF CITATIONS
SEARCH DETAIL
...