Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biomedicines ; 10(1)2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35052829

ABSTRACT

Mucosal melanomas (MM) are rare tumors, being less than 2% of all diagnosed melanomas, comprising a variegated group of malignancies arising from melanocytes in virtually all mucosal epithelia, even if more frequently found in oral and sino-nasal cavities, ano-rectum and female genitalia (vulva and vagina). To date, there is no consensus about the optimal management strategy of MM. Furthermore, the clinical rationale of molecular tumor characterization regarding BRAF, KIT or NRAS, as well as the therapeutic value of immunotherapy, chemotherapy and targeted therapy, has not yet been deeply explored and clearly established in MM. In this overview, focused on anorectal and genital MM as models of rare melanomas deserving of a multidisciplinary approach, we highlight the need of referring these patients to centers with experts in melanoma, anorectal and uro-genital cancers treatments. Taking into account the rarity, the poor outcomes and the lack of effective treatment options for MM, tailored research needs to be promptly promoted.

2.
Membranes (Basel) ; 11(7)2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34357186

ABSTRACT

Manipulation of ions and molecules by external control at the nanoscale is highly relevant to biomedical applications. We report a biocompatible electrode-embedded nanofluidic channel membrane designed for electrofluidic applications such as ionic field-effect transistors for implantable drug-delivery systems. Our nanofluidic membrane includes a polysilicon electrode electrically isolated by amorphous silicon carbide (a-SiC). The nanochannel gating performance was experimentally investigated based on the current-voltage (I-V) characteristics, leakage current, and power consumption in potassium chloride (KCl) electrolyte. We observed significant modulation of ionic diffusive transport of both positively and negatively charged ions under physical confinement of nanochannels, with low power consumption. To study the physical mechanism associated with the gating performance, we performed electrochemical impedance spectroscopy. The results showed that the flat band voltage and density of states were significantly low. In light of its remarkable performance in terms of ionic modulation and low power consumption, this new biocompatible nanofluidic membrane could lead to a new class of silicon implantable nanofluidic systems for tunable drug delivery and personalized medicine.

3.
J Clin Med ; 10(8)2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33921760

ABSTRACT

Gastric cancer (GC) is the third cause of cancer-related death worldwide; the prognosis is poor especially in the case of metastatic disease. Liver, lymph nodes, peritoneum, and lung are the most frequent sites of metastases from GC; however, bone metastases from GC have been reported in the literature. Nevertheless, it is unclear how the metastatic sites may affect the prognosis. In particular, knowledge about the impact of bone metastases on GC patients' outcome is scant, and this may be related to the rarity of bone lesions and/or their underestimation at the time of diagnosis. In fact, there is still a lack of specific recommendation for their detection at the diagnosis. Then, the majority of the evidences in this field came from retrospective analysis on very heterogeneous study populations. In this context, the aim of this narrative review is to delineate an overview about the evidences existing about bone metastases in GC patients, focusing on their incidence and biology, the prognostic role of bone involvement, and their possible implication in the treatment choice.

4.
Cancers (Basel) ; 12(10)2020 Oct 18.
Article in English | MEDLINE | ID: mdl-33080958

ABSTRACT

Immune checkpoint inhibitors (ICIs) represent a promising treatment for many kinds of cancers, including hepatocellular carcinoma (HCC). The rationale for using ICIs in HCC is based on the immunogenic background of hepatitis and cirrhosis and on the observation of high programmed death-ligand 1 (PD-L1) expression and tumor-infiltrating lymphocytes in this cancer. Promising data from phase I/II studies in advanced HCC, showing durable objective response rates (~20% in first- and second-line settings) and good safety profile, have led to phase III studies with ICIs as single agents or in combination therapy, both in first and second line setting. While the activity of immunotherapy agents as single agents seems to be limited to an "ill-defined" small subset of patients, the combination of the anti PD-L1 atezolizumab and anti-vascular endothelial growth factor bevacizumab revealed a benefit in the outcomes when compared to sorafenib in the first line. In addition, the activity and efficacy of the combinations between anti-PD-1/anti-PD-L1 antibody and other ICIs, tyrosine kinase inhibitors, or surgical and locoregional therapies, has also been investigated in clinical trials. In this review, we provide an overview of the role of ICIs in the management of HCC with a critical evaluation of the current status and future directions.

5.
Pharmaceutics ; 12(7)2020 Jul 19.
Article in English | MEDLINE | ID: mdl-32707665

ABSTRACT

Individualized long-term management of chronic pathologies remains an elusive goal despite recent progress in drug formulation and implantable devices. The lack of advanced systems for therapeutic administration that can be controlled and tailored based on patient needs precludes optimal management of pathologies, such as diabetes, hypertension, rheumatoid arthritis. Several triggered systems for drug delivery have been demonstrated. However, they mostly rely on continuous external stimuli, which hinder their application for long-term treatments. In this work, we investigated a silicon nanofluidic technology that incorporates a gate electrode and examined its ability to achieve reproducible control of drug release. Silicon carbide (SiC) was used to coat the membrane surface, including nanochannels, ensuring biocompatibility and chemical inertness for long-term stability for in vivo deployment. With the application of a small voltage (≤ 3 V DC) to the buried polysilicon electrode, we showed in vitro repeatable modulation of membrane permeability of two model analytes-methotrexate and quantum dots. Methotrexate is a first-line therapeutic approach for rheumatoid arthritis; quantum dots represent multi-functional nanoparticles with broad applicability from bio-labeling to targeted drug delivery. Importantly, SiC coating demonstrated optimal properties as a gate dielectric, which rendered our membrane relevant for multiple applications beyond drug delivery, such as lab on a chip and micro total analysis systems (µTAS).

6.
Lab Chip ; 20(9): 1562-1576, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32249279

ABSTRACT

Patient-centered therapeutic management for chronic medical conditions is a desired but unmet need, largely attributable to the lack of adequate technologies for tailored drug administration. While triggered devices that control the delivery of therapeutics exist, they often rely on impractical continuous external activation. As such, next generation continuously tunable drug delivery systems independent of sustained external activation remain an elusive goal. Here we present the development and demonstration of a silicon carbide (SiC)-coated nanofluidic membrane that achieves reproducible and tunable control of drug release via electrostatic gating. By applying a low-intensity voltage to a buried electrode, we showed repeatable and reproducible in vitro release modulation of three model analytes. A small fluorophore (Alexa Fluor 647), a large polymer poly(sodium 4-styrenesulfonate) and a medically relevant agent (DNA), were selected as representatives of small molecule therapeutics, polymeric drug carriers, and biological therapeutics, respectively. Unlike other drug delivery systems, our technology performed consistently over numerous cycles of voltage modulation, for over 11 days. Importantly, low power consumption and minimal leakage currents were achieved during the study. Further, the SiC coating maintained integrity and chemical inertness, shielding the membrane from degradation under simulated physiological and accelerated conditions for over 4 months. Through leveraging the flexibility offered by electrostatic gating control, our technology provides a valuable strategy for tunable delivery, setting the foundation for the next generation of drug delivery systems.


Subject(s)
Drug Delivery Systems , Lab-On-A-Chip Devices , Nanotechnology , Polystyrenes/chemistry , Drug Carriers/chemistry , Drug Liberation , Humans , Static Electricity
7.
Rep Pract Oncol Radiother ; 25(3): 396-398, 2020.
Article in English | MEDLINE | ID: mdl-32322179

ABSTRACT

BACKGROUND: Lung toxicity in patients undergoing cetuximab and radiotherapy (Cetux-RT) for head and neck squamous cell carcinoma (HNSCC) has been reported in literature and represents a serious side effect of concurrent therapies. METHODS: We report a case of a HNSCC patient that developed neck emphysema during the course of Cetux-RT. The patient was an old male (80 years old) in a good performance status, with an oropharyngeal cancer (T4aN3a). RESULTS: During RT, cone-beam computed tomography (CBCT) showed bilateral neck emphysema that was confirmed at restaging CT. We decided to stop the treatment and to treat the neck emphysema with conservative strategies. After one week CT was repeated and the neck emphysema had improved, so we decided to complete the RT treatment. CONCLUSIONS: Patients undergoing Cetux-RT must be properly selected, whereas IGRT imaging must be viewed carefully in order to permit an early diagnosis and careful management of the patients.

8.
Lab Chip ; 19(13): 2192-2204, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31169840

ABSTRACT

Chronic diseases such as hypertension and rheumatoid arthritis are persistent ailments that require personalized lifelong therapeutic management. However, the difficulty of adherence to strict dosing schedule compromises therapeutic efficacy and safety. Moreover, the conventional one-size-fits-all treatment approach is increasingly challenged due to the intricacies of inter- and intra-individual variabilities. While accelerated technological advances have led to sophisticated implantable drug delivery devices, flexibility in dosage and timing modulation to tailor precise treatment to individual needs remains an elusive goal. Here we describe the development of a subcutaneously implantable remote-controlled nanofluidic device capable of sustained drug release with adjustable dosing and timing. By leveraging a low intensity electric field to modify the concentration driven diffusion across a nanofluidic membrane, the rate of drug administration can be increased, decreased or stopped via Bluetooth remote command. We demonstrate in vitro the release modulation of enalapril and methotrexate, first-line therapeutics for treatment of hypertension and rheumatoid arthritis, respectively. Further, we show reliable remote communication and device biocompatibility via in vivo studies. Unlike a pulsatile release regimen typical of some conventional controlled delivery systems, our implant offers a continuous drug administration that avoids abrupt fluctuations, which could affect response and tolerability. Our system could set the foundation for an on-demand delivery platform technology for long term management of chronic diseases.


Subject(s)
Drug Delivery Systems , Microfluidic Analytical Techniques , Nanotechnology , Drug Delivery Systems/instrumentation , Equipment Design , Microfluidic Analytical Techniques/instrumentation , Nanotechnology/instrumentation
9.
Adv Sci (Weinh) ; 4(5): 1600522, 2017 05.
Article in English | MEDLINE | ID: mdl-28546915

ABSTRACT

Development of an efficient sensing platform capable of continual monitoring of biomarkers is needed to assess the functionality of the in vitro organoids and to evaluate their biological responses toward pharmaceutical compounds or chemical species over extended periods of time. Here, a novel label-free microfluidic electrochemical (EC) biosensor with a unique built-in on-chip regeneration capability for continual measurement of cell-secreted soluble biomarkers from an organoid culture in a fully automated manner without attenuating the sensor sensitivity is reported. The microfluidic EC biosensors are integrated with a human liver-on-a-chip platform for continual monitoring of the metabolic activity of the organoids by measuring the levels of secreted biomarkers for up to 7 d, where the metabolic activity of the organoids is altered by a systemically applied drug. The variations in the biomarker levels are successfully measured by the microfluidic regenerative EC biosensors and agree well with cellular viability and enzyme-linked immunosorbent assay analyses, validating the accuracy of the unique sensing platform. It is believed that this versatile and robust microfluidic EC biosensor that is capable of automated and continual detection of soluble biomarkers will find widespread use for long-term monitoring of human organoids during drug toxicity studies or efficacy assessments of in vitro platforms.

10.
Proc Natl Acad Sci U S A ; 114(12): E2293-E2302, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28265064

ABSTRACT

Organ-on-a-chip systems are miniaturized microfluidic 3D human tissue and organ models designed to recapitulate the important biological and physiological parameters of their in vivo counterparts. They have recently emerged as a viable platform for personalized medicine and drug screening. These in vitro models, featuring biomimetic compositions, architectures, and functions, are expected to replace the conventional planar, static cell cultures and bridge the gap between the currently used preclinical animal models and the human body. Multiple organoid models may be further connected together through the microfluidics in a similar manner in which they are arranged in vivo, providing the capability to analyze multiorgan interactions. Although a wide variety of human organ-on-a-chip models have been created, there are limited efforts on the integration of multisensor systems. However, in situ continual measuring is critical in precise assessment of the microenvironment parameters and the dynamic responses of the organs to pharmaceutical compounds over extended periods of time. In addition, automated and noninvasive capability is strongly desired for long-term monitoring. Here, we report a fully integrated modular physical, biochemical, and optical sensing platform through a fluidics-routing breadboard, which operates organ-on-a-chip units in a continual, dynamic, and automated manner. We believe that this platform technology has paved a potential avenue to promote the performance of current organ-on-a-chip models in drug screening by integrating a multitude of real-time sensors to achieve automated in situ monitoring of biophysical and biochemical parameters.


Subject(s)
Automation/methods , Biosensing Techniques/methods , Drug Evaluation, Preclinical/methods , Organoids/physiology , Automation/instrumentation , Biosensing Techniques/instrumentation , Drug Evaluation, Preclinical/instrumentation , Heart/physiology , Humans , Liver/chemistry , Liver/physiology , Microfluidics , Models, Biological , Myocardium , Organoids/chemistry , Organoids/drug effects
11.
Anal Chem ; 88(20): 10019-10027, 2016 Oct 18.
Article in English | MEDLINE | ID: mdl-27617489

ABSTRACT

Continual monitoring of secreted biomarkers from organ-on-a-chip models is desired to understand their responses to drug exposure in a noninvasive manner. To achieve this goal, analytical methods capable of monitoring trace amounts of secreted biomarkers are of particular interest. However, a majority of existing biosensing techniques suffer from limited sensitivity, selectivity, stability, and require large working volumes, especially when cell culture medium is involved, which usually contains a plethora of nonspecific binding proteins and interfering compounds. Hence, novel analytical platforms are needed to provide noninvasive, accurate information on the status of organoids at low working volumes. Here, we report a novel microfluidic aptamer-based electrochemical biosensing platform for monitoring damage to cardiac organoids. The system is scalable, low-cost, and compatible with microfluidic platforms easing its integration with microfluidic bioreactors. To create the creatine kinase (CK)-MB biosensor, the microelectrode was functionalized with aptamers that are specific to CK-MB biomarker secreted from a damaged cardiac tissue. Compared to antibody-based sensors, the proposed aptamer-based system was highly sensitive, selective, and stable. The performance of the sensors was assessed using a heart-on-a-chip system constructed from human embryonic stem cell-derived cardiomyocytes following exposure to a cardiotoxic drug, doxorubicin. The aptamer-based biosensor was capable of measuring trace amounts of CK-MB secreted by the cardiac organoids upon drug treatments in a dose-dependent manner, which was in agreement with the beating behavior and cell viability analyses. We believe that, our microfluidic electrochemical biosensor using aptamer-based capture mechanism will find widespread applications in integration with organ-on-a-chip platforms for in situ detection of biomarkers at low abundance and high sensitivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...