Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Inorg Biochem ; 104(7): 765-73, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20427089

ABSTRACT

The photophysical and photochemical properties of the cationic Zn(II) complex of 5-triethyl ammonium methyl salicylidene ortho-phenylendiimine (ZnL(2+)) interacting with native DNA were investigated by steady state and time-resolved fluorescence spectroscopies. Experimental results indicate that, in the presence of DNA, ZnL(2+) is efficiently protected from a photochemical process, which occurs when it is in the free state dispersed in aqueous solution. The analysis of the absorption and emission spectra of ZnL(2+), both stored in the dark and after exposure to tungsten lamp light for 24 h, corroborated by quantum chemical calculations, allowed us to point out that ZnL(2+) undergoes a photoinduced two-electron oxidation process. According to this picture, the protective action of DNA toward the intercalated ZnL(2+) was attributed to an effective inhibition of the ZnL(2+) photooxidation. In this context, it can be considered that DNA-intercalated ZnL(2+) is located in a region more hydrophobic than that sensed in the bulk water solvent. Moreover, by a thorough analysis of steady state and time-resolved fluorescence spectra, the interaction process can be consistently explained in terms of a complete intercalation of the complex molecules and that the polarity of the environment sensed by intercalated ZnL(2+) is comprised between that of methanol and ethanol.


Subject(s)
Fluorescence , Intercalating Agents/chemistry , Organometallic Compounds/chemistry , Zinc/chemistry , DNA/metabolism , Oxidation-Reduction , Photochemical Processes , Solvents , Spectrum Analysis
2.
J Inorg Biochem ; 103(5): 731-7, 2009 May.
Article in English | MEDLINE | ID: mdl-19230979

ABSTRACT

The interaction of native calf thymus DNA with the cationic Ni(II) complex of 5-triethyl ammonium methyl salicylidene ortho-phenylendiimine (NiL(2+)), in 1mM Tris-HCl aqueous solutions at neutral pH, has been monitored as a function of the metal complex-DNA molar ratio by UV absorption spectrophotometry, circular dichroism (CD) and fluorescence spectroscopy. The dramatic modification of the DNA CD spectrum, the appearance of a broad induced CD band in the range 350-400nm, the strong increase of the DNA melting temperature (T(m)) and the fluorescence quenching of ethidium bromide-DNA solutions, in the presence of increasing amounts of the NiL(2+) metal complex, support the existence of a tight intercalative interaction of NiL(2+) with DNA, analogous to that recently reported for both ZnL(2+) and CuL(2+). The intrinsic binding constant (K(b)) and the interaction stoichiometry (s), determined by UV spectrophotometric titration, are equal to 4.3x10(6)M(-1) and 1.0 base pair per metal complex, respectively. Interestingly, the value of K(b) is slightly higher and 10 times higher than that relative to the CuL(2+)-DNA and the ZnL(2+)-DNA systems, respectively. Speculations can be performed to rationalize the observed trend, on the basis of the electronic and geometrical structures of the three complexes of the same ligand. Analogously to what previously observed for CuL(2+), the shape of the CD of the NiL(2+)-DNA system at NiL(2+)-DNA molar ratios higher than 0.5 is indicative of the formation of supramolecular aggregates in solutions, as a possible consequence of the electrostatic interaction between the cationic complex and the negatively charged phosphate groups of DNA.


Subject(s)
DNA/chemistry , Nickel/chemistry , Organometallic Compounds/chemistry , Circular Dichroism , Molecular Structure , Schiff Bases/chemistry , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet
3.
J Inorg Biochem ; 103(1): 1-9, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18848728

ABSTRACT

The mono and bis dipyrido[3,2-a:2',3'-c]phenazine (dppz) adducts of iron(III) chloride, i.e. [Fe(dppz)]Cl(3) and [Fe(dppz)(2)]Cl(3), have been synthesized and characterized. The interaction of the Fe(III)dppz hydrolyzed aquo complex with native calf thymus DNA has been monitored as a function of the metal complex-DNA molar ratio, by variable temperature UV absorption spectrophotometry, circular dichroism (CD) and fluorescence spectroscopy. The results obtained in solution at various ionic strength values give support for a tight intercalative binding of the Fe(III)dppz cation with DNA. In particular, the appearance of induced CD bands, caused by the addition of Fe(III)dppz, indicate the existence of a rigid metal complex-DNA-binding leading to dominating chiral organization of Fe(III)dppz species within the DNA double helix. The trend of selected CD bands with the molar concentration of Fe(III)dppz emphasizes that the presence of high amounts of metal complex induces also the formation of DNA-Fe(III)dppz supramolecular aggregates in solution. The analysis of fluorescence measurements allowed us to calculate a value of the intercalative binding constant comparable to that obtained by UV spectrophotometric titration. Finally, the temperature dependence of the absorbance at 258nm shows that the metal complex strongly increases the DNA melting temperature already at metal complex-DNA molar ratio equal to 0.25 suggesting that metal complex intercalation effectively hinders DNA denaturation. Overall, the results of the present study point out that the Fe(III)dppz aquo complex has DNA-binding properties analogous to those previously reported for the tris-chelate Fe(II)(phen)(2)dppz complex (phen=1,10-phenantroline).


Subject(s)
DNA Adducts/metabolism , DNA/metabolism , Ferric Compounds/metabolism , Phenazines/metabolism , Circular Dichroism , DNA Adducts/chemical synthesis , DNA Adducts/chemistry , Ferric Compounds/chemical synthesis , Ferric Compounds/chemistry , Fluorescence , Nucleic Acid Denaturation , Phenazines/chemical synthesis , Phenazines/chemistry
4.
Dalton Trans ; (31): 4172-8, 2008 Aug 21.
Article in English | MEDLINE | ID: mdl-18688436

ABSTRACT

Confinement effects of native calf thymus DNA interacting with the complex Cu(ii)-5-(triethylammoniummethyl)salicylidene ortho-phenylendiiminate (CuL(2+)) perchlorate in tetraethylene glycol monododecyl ether (C(12)E(4)) liquid crystals have been investigated by UV absorption spectrophotometry, circular dichroism (CD) and small angle X-ray scattering (SAXS). The results indicate the occurrence of dramatic structural changes of both the DNA and the CuL(2+)-DNA system, when going from aqueous solution to C(12)E(4) liquid crystals, due to confinement constrains imposed by the closed structure of C(12)E(4) reverse micelles. Further marked departures from the behaviour observed in aqueous solution have been emphasized by registering the spectral response of DNA and CuL(2+)-DNA confined in C(12)E(4) reverse micelles after thermal treatment. It has been also ascertained that the confinement causes the formation of a more compact and thermoresistant DNA structure accompanied by a transition from the right- to left-handed form while a tight CuL(2+)-DNA binding has been revealed by the appearance of a broad induced CD band in the range 350-450 nm. From a biological point of view, these findings stress the need to account for confinement effects and the peculiarity of drug-DNA interactions occurring within the intra-cellular environment.


Subject(s)
DNA/chemistry , Liquid Crystals/chemistry , Organometallic Compounds/chemistry , Polyethylene Glycols/chemistry , Absorption , Animals , Cattle , Circular Dichroism , DNA/metabolism , Intracellular Space/metabolism , Organometallic Compounds/metabolism , Scattering, Small Angle , Spectrophotometry, Ultraviolet , Water/chemistry , X-Ray Diffraction
5.
J Inorg Biochem ; 101(5): 841-8, 2007 May.
Article in English | MEDLINE | ID: mdl-17383733

ABSTRACT

The interaction of native calf thymus DNA with the Zn(II) and Cu(II) complexes of 5-triethyl ammonium methyl salicylidene orto-phenylendiimine (ZnL(2+) and CuL(2+)), in 1 mM Tris-HCl aqueous solutions at neutral pH, has been monitored as a function of the metal complex-DNA molar ratio by UV absorption spectrophotometry, circular dichroism (CD) and fluorescence spectroscopy. The results support for an intercalative interaction of both ZnL(2+) and CuL(2+) with DNA, showing CuL(2+) an affinity of approximately 10 times higher than ZnL(2+). In particular, the values of the binding constant, determined by UV spectrophotometric titration, equal to 7.3x10(4) and 1.3x10(6)M(-1), for ZnL(2+) and CuL(2+), respectively, indicate the occurrence of a marked interaction with a binding size of about 0.7 in base pairs. The temperature dependence of the absorbance at 258 nm suggests that both complexes strongly increase the DNA melting temperature (Tm) already at metal complex-DNA molar ratios equal to 0.1. As evidenced by the quenching of the fluorescence of ethidium bromide-DNA solutions in the presence of increasing amounts of metal complex, ZnL(2+) and CuL(2+) are able to displace the ethidium cation intercalated into DNA. A tight ZnL(2+)-DNA and CuL(2+)-DNA binding has been also proven by the appearance, in both metal complex-DNA solutions, of a broad induced CD band in the range 350-450 nm. In the case of the CuL(2+)-DNA system, the shape of the CD spectrum, at high CuL(2+) content, is similar to that observed for psi-DNA solutions. Such result allowed us to hypothesize that CuL(2+) induces the formation of supramolecular aggregates of DNA in aqueous solutions.


Subject(s)
Copper/chemistry , DNA/chemistry , Imines/chemistry , Organometallic Compounds/chemistry , Zinc/chemistry , Animals , Cattle , Circular Dichroism , DNA/metabolism , Imines/chemical synthesis , Nucleic Acid Denaturation , Organometallic Compounds/chemical synthesis , Quaternary Ammonium Compounds/chemical synthesis , Quaternary Ammonium Compounds/chemistry , Schiff Bases/chemical synthesis , Schiff Bases/chemistry , Spectrophotometry, Ultraviolet
6.
J Org Chem ; 71(7): 2740-9, 2006 Mar 31.
Article in English | MEDLINE | ID: mdl-16555828

ABSTRACT

The photoinduced competitive rearrangements of 5-perfluoroalkyl-3-amino(N-alkylamino)-1,2,4-oxadiazoles have been investigated by DFT calculations and UV-vis spectroscopy. The observed product selectivity depends on the number of hydrogen atoms present in the amino moiety and involves two or three possible routes: (i) ring contraction-ring expansion (RCRE), (ii) internal-cyclization isomerization (ICI), or (iii) C3-N2 migration-nucleophilic attack-cyclization (MNAC). UV absorption and fluorescence spectra of the reactants, and vertical excitation energy values, calculated by time dependent DFT, support the involvement of a neutral singlet excited state in the photoexcitation process. The values of the standard free energy of the most stable prototropic tautomers of reactant, products, proposed reaction intermediates, and deprotonated anionic transition states allowed us to rationalize the competition among the three rearrangements, in agreement with chemical trapping experiments, in terms of: (i) the evolution of the excited state toward three stable ground-state intermediates, (ii) tautomeric and deprotonation equilibria occurring in methanol solution for each intermediate, and (iii) relative stabilization of intermediates and transition states in the thermally driven section of the reaction.


Subject(s)
Models, Chemical , Oxadiazoles/chemical synthesis , Oxadiazoles/radiation effects , Ultraviolet Rays , Molecular Structure , Oxadiazoles/chemistry , Photochemistry
7.
Chemistry ; 11(21): 6185-91, 2005 Oct 21.
Article in English | MEDLINE | ID: mdl-16052634

ABSTRACT

DFT calculations, using an all-electron basis set and with full geometry optimization, were performed on 34 Sn(II) and Sn(IV) compounds of known structure and (119)Sn Mössbauer parameters, to obtain the theoretical values of the electric field gradient components, V(xx), V(yy), and V(zz), at the tin nucleus. These were used to determine the quantity V = V(zz)[1+ 1/3((V(xx) - V(yy))/((V(zz))(2)](1/2), for each investigated compound, which is related to the quadrupole splitting (DeltaE) parameter according to DeltaE = 1/2eQV, where e is the electronic charge and Q is the quadrupole moment of the tin nucleus. The linear fitting of the correlation plot of the experimental DeltaE, versus the corresponding calculated V values, produced a slope that is equal to 0.93 +/- 0.03 and a correlation coefficient R = 0.982. The value of Q obtained, 15.2 +/- 4.4 fm(2), is in agreement with that previously experimentally determined or calculated by analogous procedures. The calculation method is able to establish the sign of the electric field gradient component V(zz), in agreement with the sign of DeltaE determined experimentally by Mössbauer-Zeeman spectroscopy. The calculated structural parameters are in good agreement with the corresponding experimental data, determined by X-ray crystallography in the solid state, with average structural deviations of about 3 % for bond lengths and angles in the tin environment. Calculated values of DeltaE were obtained from the calibration fitting constant and from the values of V. By comparing experimental and calculated DeltaE parameters, the structure assignment of configurational isomers was successful in two test cases, in agreement with the experimental X-ray crystallographic structures. These results indicate that the method can be used as a tool to support the routine structure interpretation of tin compounds by (119)Sn Mössbauer spectroscopy.

8.
Phys Chem Chem Phys ; 7(10): 2126-30, 2005 May 21.
Article in English | MEDLINE | ID: mdl-19791403

ABSTRACT

The electronic structure and the UV-vis spectrum of reduced and oxidized model systems of the N,N'-1,2-phenylenebis(2-mercapto-2-methylpropionamide) copper complex have been studied using a multiconfigurational quantum chemical method (CASSCF/CASPT2). The bonds between Cu and the two sulfur ligand atoms have a large covalent character in the oxidized Cu(III) form. As a result of the increased covalency, the effective charge on the Cu atom is actually smaller in the oxidized form. The electronic spectrum for both oxidation states of the complex is in agreement with the experiment for excitation energies and intensities showing that the theoretical description of the electronic structure is essentially correct. All bands that involve excitations from either Cu or S localized orbitals to the empty or half empty CuS antibonding orbital have been characterized.

9.
J Inorg Biochem ; 98(4): 589-94, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15041238

ABSTRACT

The interaction between native calf thymus deoxyribonucleic acid (DNA) and Fe(III)- N ,N'-ethylene-bis (salicylideneiminato)-chloride, Fe(Salen)Cl, was investigated in aqueous solutions by UV-visible (UV-vis) absorption, circular dichroism (CD), thermal denaturation and viscosity measurements. The results obtained from CD, UV-vis and viscosity measurements exclude DNA intercalation and can be interpreted in terms of an electrostatic binding between the Fe(Salen)(+) cation and the phosphate groups of DNA. The trend of the UV-vis absorption band of the Fe(Salen)Cl complex at different ratios [DNA(phosphate)]/[Fe(Salen)Cl] and the large increase of the melting temperature of DNA in the presence of Fe(Salen)Cl, support the hypothesis of an external electrostatic interaction between the negatively charged DNA double helix and the axially stacked positively charged Fe(Salen)(+) moieties, analogously to what reported for a number of porphyrazines and metal-porphyrazine complexes interacting with DNA.


Subject(s)
DNA/chemistry , Ferric Compounds/chemistry , Schiff Bases/chemistry , Animals , Cattle , Circular Dichroism , Iron Isotopes , Nucleic Acid Denaturation , Spectrum Analysis , Viscosity
10.
J Inorg Biochem ; 92(3-4): 171-6, 2002 Nov 25.
Article in English | MEDLINE | ID: mdl-12433425

ABSTRACT

Alcoholic solutions of FeCl(2) and Fe(II)(Hmmi)(2)Cl(2) (Hmmi=1-methyl-2-mercaptoimidazole) induce calf thymus DNA condensation from aqueous solutions buffered at pH 7.4. A 1:1 Fe(II)-(DNA monomer) stoichiometry is assumed. The (57)Fe Mössbauer hyperfine parameters suggest an octahedral coordination environment, severely distorted, in both Fe(II)-(DNA monomer) and [Fe(II)(Hmmi)(2)]-(DNA monomer) condensates. The dynamic properties of iron nuclei in freeze-dried samples were investigated by means of variable temperature (57)Fe Mössbauer spectroscopy. Mean square displacements, (T), were calculated, such as the effective vibrating mass and the Mössbauer lattice temperature of the solids. increases linearly with the temperature in the whole temperature range explored; the absolute values are typical for lattice or solid-state vibrations. Very similar values for the effective vibrating masses were extracted, suggesting comparable covalency of the bonding interaction between the metal atom and its ligands, while the Mössbauer lattice temperatures show a softening of the lattice for [Fe(II)(Hmmi)(2)]-(DNA monomer) with respect to Fe(II)-(DNA monomer) condensate.


Subject(s)
DNA/chemistry , Ferrous Compounds/chemistry , Animals , Methimazole/chemistry , Molecular Structure , Spectroscopy, Mossbauer , Vibration
11.
Chemistry ; 8(14): 3233-9, 2002 Jul 15.
Article in English | MEDLINE | ID: mdl-12203353

ABSTRACT

Geometry optimization and GIAO (gauge including atomic orbitals) (13)C NMR chemical shift calculations at Hartree-Fock level, using the 6-31G(d) basis set, are proposed as a tool to be applied in the structural characterization of new organic compounds, thus providing useful support in the interpretation of experimental NMR data. Parameters related to linear correlation plots of computed versus experimental (13)C NMR chemical shifts for fourteen low-polar natural products, containing 10-20 carbon atoms, were employed to assess the reliability of the proposed structures. A comparison with the hybrid B3LYP method was carried out to evaluate electron correlation contributions to the calculation of (13)C NMR chemical shifts and, eventually, to extend the applicability of such computational methods to the interpretation of NMR spectra in apolar solutions. The method was tested by studying three examples of revised structure assignments, analyzing how the theoretical (13)C chemical shifts of both correct and incorrect structures matched the experimental data.


Subject(s)
Biological Products/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Carbon Isotopes , Heterocyclic Compounds/chemistry , Magnetics , Molecular Structure , Polycyclic Compounds/chemistry , Quantum Theory
12.
Chemistry ; 8(14): 3240-5, 2002 Jul 15.
Article in English | MEDLINE | ID: mdl-12203354

ABSTRACT

Ab initio calculations at the Hartree-Fock level with full-geometry optimization using the 6-31G(d) basis set, and GIAO (gauge including atomic orbitals) (13)C NMR chemical shifts, are presented here as a support in the study of the stereochemistry of low-polar organic compounds having an open-chain structure. Four linear stereoisomers, fragments of a natural product previously characterized by experimental (13)C NMR spectra, which possesses three stereogenic centers, 11 carbon atoms, and 38 atoms in total, were considered. Conformational searches, by empirical force-field molecular dynamics, pointed out the existence of 8-13 relevant conformers per stereoisomer. Thermochemical calculations at the ab initio level in the harmonic approximation of the vibrational modes, allowed the evaluation, at 298.15 K, of the standard Gibbs free energy of the conformers. The (13)C NMR chemical shift of a given carbon atom in each stereoisomer was considered as the average chemical shift value of the same atom in the different conformers. The averages were obtained by the Boltzmann distribution, using the relative standard free energies as weighting factors. Computed parameters related to linear correlation plots of experimental (13)C chemical shifts versus the corresponding computed average data allowed us to distinguish among the four stereoisomers.

13.
J Inorg Biochem ; 88(1): 14-8, 2002 Jan 01.
Article in English | MEDLINE | ID: mdl-11750020

ABSTRACT

The dynamics of iron nuclei in the condensates obtained by interaction of Fe(III) with DNA, Fe(III)(DNA monomer)(2), have been investigated by variable temperature (57)Fe Mössbauer spectroscopy. Studies were effected on gel and freeze-dried samples, obtaining nearly coincident values of the parameters isomer shift and nuclear quadrupole splitting in T ranges 20-260 K. Functions ln(A(T)/A(77.3)) vs. T, here employed to investigate the dynamics of Fe nuclei, showed linear trends in the T ranges 20-150 and 150-260 K, respectively, the latter with larger slopes. Data coincided for gelled and freeze-dried specimens. No variation of delta or Delta E parameters occurred at the two T intervals, which suggests constancy of structure and bonding with the temperature changes. Functions (T) showed trends analogous to the corresponding functions determined for iron proteins, which were attributed to the occurrence of 'conformational substates'.


Subject(s)
DNA/chemistry , Iron Isotopes/chemistry , Animals , DNA/metabolism , Freeze Drying , Gels , Iron Isotopes/metabolism , Molecular Structure , Spectroscopy, Mossbauer , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...