Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 3350, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35233004

ABSTRACT

Deregulated energy homeostasis represents a hallmark of aging and results from complex gene-by-environment interactions. Here, we discovered that reducing the expression of the gene ech-6 encoding enoyl-CoA hydratase remitted fat diet-induced deleterious effects on lifespan in Caenorhabditis elegans, while a basal expression of ech-6 was important for survival under normal dietary conditions. Lipidomics revealed that supplementation of fat in ech-6-silenced worms had marginal effects on lipid profiles, suggesting an alternative fat utilization for energy production. Transcriptomics further suggest a causal relation between the lysosomal pathway, energy production, and the longevity effect conferred by the interaction between ech-6 and fat diets. Indeed, enhancing energy production from endogenous fat by overexpressing lysosomal lipase lipl-4 recapitulated the lifespan effects of fat diets on ech-6-silenced worms. Collectively, these results suggest that the gene ech-6 is potential modulator of metabolic flexibility and may be a target for promoting metabolic health and longevity.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Aging/genetics , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Longevity/genetics , Lysosomes/metabolism
2.
Cell Rep ; 23(7): 1915-1921, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29768192

ABSTRACT

Transcriptional modulation of the process of autophagy involves the transcription factor HLH-30/TFEB. In order to systematically determine the regulatory network of HLH-30/TFEB, we performed a genome-wide RNAi screen in C. elegans and found that silencing the nuclear export protein XPO-1/XPO1 enhances autophagy by significantly enriching HLH-30 in the nucleus, which is accompanied by proteostatic benefits and improved longevity. Lifespan extension via xpo-1 silencing requires HLH-30 and autophagy, overlapping mechanistically with several established longevity models. Selective XPO1 inhibitors recapitulated the effect on autophagy and lifespan observed by silencing xpo-1 and protected ALS-afflicted flies from neurodegeneration. XPO1 inhibition in HeLa cells enhanced TFEB nuclear localization, autophagy, and lysosome biogenesis without affecting mTOR activity, revealing a conserved regulatory mechanism for HLH-30/TFEB. Altogether, our study demonstrates that altering the nuclear export of HLH-30/TFEB can regulate autophagy and establishes the rationale of targeting XPO1 to stimulate autophagy in order to prevent neurodegeneration.


Subject(s)
Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/physiology , Cell Nucleus/metabolism , Longevity , Active Transport, Cell Nucleus , Animals , Caenorhabditis elegans/metabolism , Gene Silencing , HeLa Cells , Humans
3.
Autophagy ; 9(3): 278-86, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23321914

ABSTRACT

Autophagy is a cellular catabolic process in which various cytosolic components are degraded. For example, autophagy can mediate lipolysis of neutral lipid droplets. In contrast, we here report that autophagy is required to facilitate normal levels of neutral lipids in C. elegans. Specifically, by using multiple methods to detect lipid droplets including CARS microscopy, we observed that mutants in the gene bec- 1 (VPS30/ATG6/BECN1), a key regulator of autophagy, failed to store substantial neutral lipids in their intestines during development. Moreover, loss of bec-1 resulted in a decline in lipid levels in daf-2 [insulin/IGF-1 receptor (IIR) ortholog] mutants and in germline-less glp-1/Notch animals, both previously recognized to accumulate neutral lipids and have increased autophagy levels. Similarly, inhibition of additional autophagy genes, including unc-51/ULK1/ATG1 and lgg-1/ATG8/MAP1LC3A/LC3 during development, led to a reduction in lipid content. Importantly, the decrease in fat accumulation observed in animals with reduced autophagy did not appear to be due to a change in food uptake or defecation. Taken together, these observations suggest a broader role for autophagy in lipid remodeling in C. elegans.


Subject(s)
Autophagy , Caenorhabditis elegans Proteins/physiology , Caenorhabditis elegans/genetics , Gene Expression Regulation, Developmental , Lipids/physiology , Vesicular Transport Proteins/physiology , Animals , Caenorhabditis elegans/embryology , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/genetics , Intestines/embryology , Intestines/physiology , Mutation , Phenotype , RNA Interference , Receptor, Insulin/genetics , Receptors, Notch/genetics , Vesicular Transport Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...