Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 273(35): 22528-36, 1998 Aug 28.
Article in English | MEDLINE | ID: mdl-9712879

ABSTRACT

Glutathione peroxidases have been thought to function in cellular antioxidant defense. However, some recent studies on Gpx1 knockout (-/-) mice have failed to show a role for Gpx1 under conditions of oxidative stress such as hyperbaric oxygen and the exposure of eye lenses to high levels of H2O2. These findings have, unexpectedly, raised the issue of the role of Gpx1, especially under conditions of oxidative stress. Here we demonstrate a role for Gpx1 in protection against oxidative stress by showing that Gpx1 (-/-) mice are highly sensitive to the oxidant paraquat. Lethality was already detected within 24 h in mice exposed to paraquat at 10 mg.kg-1 (approximately (1)/(7) the LD50 of wild-type controls). The effects of paraquat were dose-related. In the 30 mg.kg-1-treated group, 100% of mice died within 5 h, whereas the controls showed no evidence of toxicity. We further demonstrate that paraquat transcriptionally up-regulates Gpx1 in normal cells, reinforcing a role for Gpx1 in protection against paraquat toxicity. Finally, we show that cortical neurons from Gpx1 (-/-) mice are more susceptible to H2O2; 30% of neurons from Gpx1 (-/-) mice were killed when exposed to 65 microM H2O2, whereas the wild-type controls were unaffected. These data establish a function for Gpx1 in protection against some oxidative stressors and in protection of neurons against H2O2. Further, they emphasize the need to elucidate the role of Gpx1 in protection against different oxidative stressors and in different disease states and suggest that Gpx1 (-/-) mice may be valuable for studying the role of H2O2 in neurodegenerative disorders.


Subject(s)
Glutathione Peroxidase/genetics , Hydrogen Peroxide/toxicity , Oxidative Stress , Paraquat/toxicity , Animals , Cells, Cultured , Homozygote , Mice , Mice, Knockout , Promoter Regions, Genetic , Transcription, Genetic
2.
Mol Reprod Dev ; 43(1): 7-16, 1996 Jan.
Article in English | MEDLINE | ID: mdl-8720109

ABSTRACT

Studies of the development and differentiation of early mammalian embryos have been severely limited by the paucity of material. Such studies have been largely restricted to the examination of abundant genes/proteins or to developmental expression studies of known genes for which DNA sequence data are available, allowing the use of reverse transcription and polymerase chain reaction amplification (RT-PCR). To eliminate the need for hundreds or thousands of oocytes or embryos in the construction of representative cDNA libraries, we describe a technique for generating and cloning cDNA using small caesium chloride gradient centrifugation to isolate total RNA from oocytes or embryos, followed by RT-PCR of mRNA from this total RNA. Total RNA was isolated from 70 mouse blastocysts. A portion of the cDNA generated (equivalent to seven blastocysts) was cloned, yielding a mouse blastocyst cDNA library of 1 million clones. We show that the library is representative in that it contains beta-actin, intracisternal A-type particles, tissue plasminogen activator, and B1 and B2 repetitive elements in frequencies comparable with published data from conventionally constructed libraries and estimates of mRNA abundance from expression studies. Furthermore, DNA sequencing of 22 clones chosen at random and compared with DNA sequence databases shows that approximately half are novel sequences. These data demonstrate that representative cDNA libraries can be constructed in situations where cell numbers are limiting and will facilitate the isolation of novel and interesting clones.


Subject(s)
Blastocyst/physiology , RNA/chemistry , Animals , Base Sequence , Cell Differentiation , Cell Line , Cloning, Molecular , DNA Primers , DNA Probes , DNA, Complementary , Embryonic and Fetal Development , Female , Gene Library , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Molecular Sequence Data , Oligodeoxyribonucleotides , Oocytes/physiology , Polymerase Chain Reaction/methods , RNA/isolation & purification , RNA/metabolism , Reproducibility of Results , Superovulation
SELECTION OF CITATIONS
SEARCH DETAIL
...