Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(4)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38397046

ABSTRACT

A traumatic brain injury (TBI) is a major health issue affecting many people across the world, causing significant morbidity and mortality. TBIs often have long-lasting effects, disrupting daily life and functionality. They cause two types of damage to the brain: primary and secondary. Secondary damage is particularly critical as it involves complex processes unfolding after the initial injury. These processes can lead to cell damage and death in the brain. Understanding how these processes damage the brain is crucial for finding new treatments. This review examines a wide range of literature from 2021 to 2023, focusing on biomarkers and molecular mechanisms in TBIs to pinpoint therapeutic advancements. Baseline levels of biomarkers, including neurofilament light chain (NF-L), ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1), Tau, and glial fibrillary acidic protein (GFAP) in TBI, have demonstrated prognostic value for cognitive outcomes, laying the groundwork for personalized treatment strategies. In terms of pharmacological progress, the most promising approaches currently target neuroinflammation, oxidative stress, and apoptotic mechanisms. Agents that can modulate these pathways offer the potential to reduce a TBI's impact and aid in neurological rehabilitation. Future research is poised to refine these therapeutic approaches, potentially revolutionizing TBI treatment.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Humans , Brain Injuries, Traumatic/drug therapy , Brain , Biomarkers , Glial Fibrillary Acidic Protein , Ubiquitin Thiolesterase
2.
Int J Mol Sci ; 24(22)2023 Nov 12.
Article in English | MEDLINE | ID: mdl-38003423

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative illness characterized by the degeneration of dopaminergic neurons in the substantia nigra, resulting in motor symptoms and without debilitating motors. A hallmark of this condition is the accumulation of misfolded proteins, a phenomenon that drives disease progression. In this regard, heat shock proteins (HSPs) play a central role in the cellular response to stress, shielding cells from damage induced by protein aggregates and oxidative stress. As a result, researchers have become increasingly interested in modulating these proteins through pharmacological and non-pharmacological therapeutic interventions. This review aims to provide an overview of the preclinical experiments performed over the last decade in this research field. Specifically, it focuses on preclinical studies that center on the modulation of stress proteins for the treatment potential of PD. The findings display promise in targeting HSPs to ameliorate PD outcomes. Despite the complexity of HSPs and their co-chaperones, proteins such as HSP70, HSP27, HSP90, and glucose-regulated protein-78 (GRP78) may be efficacious in slowing or preventing disease progression. Nevertheless, clinical validation is essential to confirm the safety and effectiveness of these preclinical approaches.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/therapy , Parkinson Disease/metabolism , Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Disease Progression
3.
Int J Mol Sci ; 24(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36902178

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder known to be the leading cause of dementia worldwide. Many microRNAs (miRNAs) were found deregulated in the brain or blood of AD patients, suggesting a possible key role in different stages of neurodegeneration. In particular, mitogen-activated protein kinases (MAPK) signaling can be impaired by miRNA dysregulation during AD. Indeed, the aberrant MAPK pathway may facilitate the development of amyloid-beta (Aß) and Tau pathology, oxidative stress, neuroinflammation, and brain cell death. The aim of this review was to describe the molecular interactions between miRNAs and MAPKs during AD pathogenesis by selecting evidence from experimental AD models. Publications ranging from 2010 to 2023 were considered, based on PubMed and Web of Science databases. According to obtained data, several miRNA deregulations may regulate MAPK signaling in different stages of AD and conversely. Moreover, overexpressing or silencing miRNAs involved in MAPK regulation was seen to improve cognitive deficits in AD animal models. In particular, miR-132 is of particular interest due to its neuroprotective functions by inhibiting Aß and Tau depositions, as well as oxidative stress, through ERK/MAPK1 signaling modulation. However, further investigations are required to confirm and implement these promising results.


Subject(s)
Alzheimer Disease , MicroRNAs , Animals , Alzheimer Disease/metabolism , MicroRNAs/genetics , Amyloid beta-Peptides/metabolism , Signal Transduction , Brain/metabolism , Mitogen-Activated Protein Kinases/metabolism
4.
Biomedicines ; 11(1)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36672709

ABSTRACT

Spinal cord injury (SCI) is a devastating condition usually induced by the initial mechanical insult that can lead to permanent motor and sensory deficits. At present, researchers are investigating potential therapeutic strategies to ameliorate the neuro-inflammatory cascade that occurs post-injury. Although the use of mesenchymal stromal/stem (MSCs) as a potential therapy in application to regenerative medicine promoted anti-inflammatory and neuroprotective effects, several disadvantages limit their use. Therefore, recent studies have reported the effects of exosomes-derived MSCs (MSC-EXOs) as an innovative therapeutic option for SCI patients. It is noteworthy that MSC-EXOs can maintain the integrity of the blood-spinal cord barrier (BSCB), promoting angiogenic, proliferative, and anti-oxidant effects, as well as immunomodulatory, anti-inflammatory, and antiapoptotic properties. Therefore, in this study, we summarized the preclinical studies reported in the literature that have shown the effects of MSC-EXOs as a new molecular target to counteract the devastating effects of SCI.

5.
Molecules ; 27(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36080415

ABSTRACT

Recently, the scientific community has started to focus on the neurogenic potential of cannabinoids. The phytocompound cannabidiol (CBD) shows different mechanism of signaling on cannabinoid receptor 1 (CB1), depending on its concentration. In this study, we investigated if CBD may induce in vitro neuronal differentiation after treatment at 5 µM and 10 µM. For this purpose, we decided to use the spinal cord × neuroblastoma hybrid cell line (NSC-34) because of its proliferative and undifferentiated state. The messenger RNAs (mRNAs) expression profiles were tested using high-throughput sequencing technology and Western blot assay was used to determine the number of main proteins in different pathways. Interestingly, the treatment shows different genes associated with neurodifferentiation statistically significant, such as Rbfox3, Tubb3, Pax6 and Eno2. The CB1 signaling pathway is responsible for neuronal differentiation at 10 µM, as suggested by the presence of p-ERK and p-AKT, but not at 5 µM. A new correlation between CBD, neurodifferentiation and retinoic acid receptor-related orphan receptors (RORs) has been observed.


Subject(s)
Cannabidiol , Cannabinoids , Cannabidiol/metabolism , Cannabidiol/pharmacology , Cannabinoids/pharmacology , MAP Kinase Signaling System , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , Signal Transduction
6.
Int J Mol Sci ; 23(14)2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35886896

ABSTRACT

Cannabis sativa L. proved to be a source of several phytocompounds able to help patients facing different diseases. Moreover, these phytocompounds can help ameliorate general conditions and control certain unpleasant effects of diseases. Some cannabinoids, however, provided more benefits applicable to settings other than palliative care. Using the NSC-34 cell line, we evaluated the barely known phytocompound named cannabinerol (CBNR) at different doses, in order to understand its unique characteristics and the ones shared with other cannabinoids. The transcriptomic analysis suggests a possible ongoing neuronal differentiation, principally due to the activation of cannabinoid receptor 1 (CB1), to which the phosphorylation of serine-threonine protein kinase (Akt) followed, especially between 20 and 7.5 µM. The increase of Neurod1 and Map2 genes at 7.5 µM, accompanied by a decrease of Vim, as well as the increase of Syp at all the other doses, point toward the initiation of differentiation signals. Our preliminary results indicate CBNR as a promising candidate to be added to the list of cannabinoids with neuronal differentiation-enhancer properties. However, further studies are needed to confirm this initial insight.


Subject(s)
Cannabinoids , Neurogenesis , Cannabinoids/pharmacology , Cannabis , Cell Differentiation/drug effects , Humans , Neurogenesis/drug effects , Protein Serine-Threonine Kinases , Receptor, Cannabinoid, CB1 , Transcriptome
7.
Front Bioeng Biotechnol ; 10: 868486, 2022.
Article in English | MEDLINE | ID: mdl-35774062

ABSTRACT

Mesenchymal stromal cells (MSCs) play an important role in the field of regenerative medicine thanks to their immunomodulatory properties and their ability to secrete paracrine factors. The use of MSCs has also been tested in children with congenital lung diseases inducing fibrosis and a decrease in lung function. Congenital malformations of the pulmonary airways (CPAM) are the most frequently encountered lung lesion that results from defects in early development of airways. Despite the beneficial properties of MSCs, interventions aimed at improving the outcome of cell therapy are needed. Hypoxia may be an approach aimed to ameliorate the therapeutic potential of MSCs. In this regard, we evaluated the transcriptomic profile of MSCs collected from pediatric patients with CPAM, analyzing similarities and differences between healthy tissue (MSCs-lung) and cystic tissue (MSCs-CPAM) both in normoxia and in cells preconditioned with hypoxia (0.2%) for 24 h. Study results showed that hypoxia induces cell cycle activation, increasing in such a way the cell proliferation ability, and enhancing cell anaerobic metabolism in both MSCs-lung and MSCs-CPAM-lung. Additionally, hypoxia downregulated several pro-apoptotic genes preserving MSCs from apoptosis and, at the same time, improving their viability in both comparisons. Finally, data obtained indicates that hypoxia leads to a greater expression of genes involved in the regulation of the cytoskeleton in MSCs-lung than MSCs-CPAM.

8.
Cells ; 11(14)2022 07 12.
Article in English | MEDLINE | ID: mdl-35883621

ABSTRACT

Spinal cord injury (SCI) represents a devastating injury to the central nervous system (CNS) that is responsible for impaired mobility and sensory function in SCI patients. The hallmarks of SCI include neuroinflammation, axonal degeneration, neuronal loss, and reactive gliosis. Current strategies, including stem cell transplantation, have not led to successful clinical therapy. MiRNAs are crucial for the differentiation of neural cell types during CNS development, as well as for pathological processes after neural injury including SCI. This makes them ideal candidates for therapy in this condition. Indeed, several studies have demonstrated the involvement of miRNAs that are expressed differently in CNS injury. In this context, the purpose of the review is to provide an overview of the pre-clinical evidence evaluating the use of miRNA therapy in SCI. Specifically, we have focused our attention on miRNAs that are widely associated with neuronal and axon regeneration. "MiRNA replacement therapy" aims to transfer miRNAs to diseased cells and improve targeting efficacy in the cells, and this new therapeutic tool could provide a promising technique to promote SCI repair and reduce functional deficits.


Subject(s)
MicroRNAs , Spinal Cord Injuries , Axons/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Nerve Regeneration/genetics , Neurons/metabolism , Spinal Cord Injuries/genetics , Spinal Cord Injuries/pathology , Spinal Cord Injuries/therapy
9.
Int J Mol Sci ; 23(4)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35216126

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder affecting millions of people around the world. The two main pathological mechanisms underlying the disease are beta-amyloid (Aß) plaques and intracellular neurofibrillary tangles (NFTs) of Tau proteins in the brain. Their reduction has been associated with slowing of cognitive decline and disease progression. Several antibodies aimed to target Aß or Tau in order to represent hope for millions of patients, but only a small number managed to be selected to participate in clinical trials. Aducanumab is a monoclonal antibody recently approved by the Food and Drug Administration (FDA), which, targeting (Aß) oligomers and fibrils, was able to reduce Aß accumulation and slow the progression of cognitive impairment. It was also claimed to have an effect on the second hallmark of AD, decreasing the level of phospho-Tau evaluated in cerebrospinal fluid (CSF) and by positron emission tomography (PET). This evidence may represent a turning point in the development of AD-efficient drugs.


Subject(s)
Alzheimer Disease/drug therapy , Antibodies, Monoclonal, Humanized/pharmacology , tau Proteins/metabolism , Alzheimer Disease/metabolism , Amyloid/metabolism , Amyloid beta-Peptides/metabolism , Animals , Brain/drug effects , Brain/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Humans , Plaque, Amyloid/drug therapy , Plaque, Amyloid/metabolism
10.
Int J Mol Sci ; 24(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36613649

ABSTRACT

Central nervous system (CNS) trauma, such as traumatic brain injury (TBI) and spinal cord injury (SCI), represents an increasingly important health burden in view of the preventability of most injuries and the complex and expensive medical care that they necessitate. These injuries are characterized by different signs of neurodegeneration, such as oxidative stress, mitochondrial dysfunction, and neuronal apoptosis. Cumulative evidence suggests that the transcriptional factor nuclear factor erythroid 2-related factor 2 (Nrf2) plays a crucial defensive role in regulating the antioxidant response. It has been demonstrated that several natural compounds are able to activate Nrf2, mediating its antioxidant response. Some of these compounds have been tested in experimental models of SCI and TBI, showing different neuroprotective properties. In this review, an overview of the preclinical studies that highlight the positive effects of natural bioactive compounds in SCI and TBI experimental models through the activation of the Nrf2 pathway has been provided. Interestingly, several natural compounds can activate Nrf2 through multiple pathways, inducing a strong antioxidant response against CNS trauma. Therefore, some of these compounds could represent promising therapeutic strategies for these pathological conditions.


Subject(s)
Brain Injuries, Traumatic , Neuroprotective Agents , Spinal Cord Injuries , Humans , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , NF-E2-Related Factor 2/metabolism , Signal Transduction , Brain Injuries, Traumatic/metabolism , Oxidative Stress , Spinal Cord Injuries/drug therapy , Central Nervous System/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
11.
Cells ; 10(12)2021 11 23.
Article in English | MEDLINE | ID: mdl-34943779

ABSTRACT

Mesenchymal stromal cells (MSCs) have been proposed as a potential therapy to treat congenital and acquired lung diseases. Due to their tissue-regenerative, anti-fibrotic, and immunomodulatory properties, MSCs combined with other therapy or alone could be considered as a new approach for repair and regeneration of the lung during disease progression and/or after post- surgical injury. Children interstitial lung disease (chILD) represent highly heterogeneous rare respiratory diseases, with a wild range of age of onset and disease expression. The chILD is characterized by inflammatory and fibrotic changes of the pulmonary parenchyma, leading to gas exchange impairment and chronic respiratory failure associated with high morbidity and mortality. The therapeutic strategy is mainly based on the use of corticosteroids, hydroxychloroquine, azithromycin, and supportive care; however, the efficacy is variable, and their long-term use is associated with severe toxicity. The role of MSCs as treatment has been proposed in clinical and pre-clinical studies. In this narrative review, we report on the currently available on MSCs treatment as therapeutical strategy in chILD. The progress into the therapy of respiratory disease in children is mandatory to ameliorate the prognosis and to prevent the progression in adult age. Cell therapy may be a future therapy from both a pediatric and pediatric surgeon's point of view.


Subject(s)
Lung Diseases, Interstitial/therapy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Pediatricians , Surgeons , Child , Extracellular Vesicles/metabolism , Humans
12.
Int J Mol Sci ; 22(21)2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34769246

ABSTRACT

The inflammatory response plays a central role in the complications of congenital pulmonary airway malformations (CPAM) and severe coronavirus disease 2019 (COVID-19). The aim of this study was to evaluate the transcriptional changes induced by SARS-CoV-2 exposure in pediatric MSCs derived from pediatric lung (MSCs-lung) and CPAM tissues (MSCs-CPAM) in order to elucidate potential pathways involved in SARS-CoV-2 infection in a condition of exacerbated inflammatory response. MSCs-lung and MSCs-CPAM do not express angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TRMPSS2). SARS-CoV-2 appears to be unable to replicate in MSCs-CPAM and MSCs-lung. MSCs-lung and MSCs-CPAM maintained the expression of stemness markers MSCs-lung show an inflammatory response (IL6, IL1B, CXCL8, and CXCL10), and the activation of Notch3 non-canonical pathway; this route appears silent in MSCs-CPAM, and cytokine genes expression is reduced. Decreased value of p21 in MSCs-lung suggested no cell cycle block, and cells did not undergo apoptosis. MSCs-lung appears to increase genes associated with immunomodulatory function but could contribute to inflammation, while MSCs-CPAM keeps stable or reduce the immunomodulatory receptors expression, but they also reduce their cytokines expression. These data indicated that, independently from their perilesional or cystic origin, the MSCs populations already present in a patient affected with CPAM are not permissive for SARS-CoV-2 entry, and they will not spread the disease in case of infection. Moreover, these MSCs will not undergo apoptosis when they come in contact with SARS-CoV-2; on the contrary, they maintain their staminality profile.


Subject(s)
Mesenchymal Stem Cells/metabolism , Respiratory System Abnormalities , SARS-CoV-2/physiology , Transcriptome , COVID-19/genetics , COVID-19/metabolism , COVID-19/pathology , Case-Control Studies , Cells, Cultured , Gene Expression Profiling , Host-Pathogen Interactions/genetics , Humans , Infant , Lung/abnormalities , Lung/metabolism , Lung/pathology , Male , Mesenchymal Stem Cells/pathology , Mesenchymal Stem Cells/virology , RNA-Seq , Respiratory System Abnormalities/genetics , Respiratory System Abnormalities/pathology , Respiratory System Abnormalities/virology
13.
Medicina (Kaunas) ; 57(10)2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34684090

ABSTRACT

Ischemic stroke (IS) is a cerebrovascular disease with a high rate of disability and mortality. It is classified as the second leading cause of death that arises from the sudden occlusion of small vessels in the brain with consequent lack of oxygen and nutrients in the brain tissue. Following an acute ischemic event, the cascade of events promotes the activation of multiple signaling pathways responsible for irreversible neuronal damage. The mitogen-activated protein kinase (MAPK) signaling pathway transmits signals from the cell membrane to the nucleus in response to different stimuli, regulating proliferation, differentiation, inflammation, and apoptosis. Several lines of evidence showed that MAPK is an important regulator of ischemic and hemorrhagic cerebral vascular disease; indeed, it can impair blood-brain barrier (BBB) integrity and exacerbate neuroinflammation through the release of pro-inflammatory mediators implementing neurovascular damage after ischemic stroke. This review aims to illustrate the miRNAs involved in the regulation of MAPK in IS, in order to highlight possible targets for potential neuroprotective treatments. We also discuss some miRNAs (miR), including miR-145, miR-137, miR-493, and miR-126, that are important as they modulate processes such as apoptosis, neuroinflammation, neurogenesis, and angiogenesis through the regulation of the MAPK pathway in cerebral IS. To date, limited drug therapies are available for the treatment of IS; therefore, it is necessary to implement preclinical and clinical studies aimed at discovering novel therapeutic approaches to minimize post-stroke neurological damage.


Subject(s)
Brain Ischemia , Ischemic Stroke , MicroRNAs , Stroke , Brain Ischemia/drug therapy , Humans , MicroRNAs/genetics , Mitogen-Activated Protein Kinases , Stroke/drug therapy
14.
Sci Rep ; 11(1): 19817, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34615949

ABSTRACT

Recent studies have focused their attention on conjunctivitis as one of the symptoms of coronavirus disease 2019 (COVID-19). Therefore, tear samples were taken from COVID-19 patients and the presence of SARS-CoV-2 was evidenced using Real Time reverse transcription polymerase chain reaction. The main aim of this study was to analyze mRNA expression in the tears of patients with COVID-19 compared with healthy subjects using Next Generation Sequencing (NGS). The functional evaluation of the transcriptome highlighted 25 genes that differ statistically between healthy individuals and patients affected by COVID-19. In particular, the NGS analysis identified the presence of several genes involved in B cell signaling and keratinization. In particular, the genes involved in B cell signaling were downregulated in the tears of COVID-19 patients, while those involved in keratinization were upregulated. The results indicated that SARS-CoV-2 may induce a process of ocular keratinization and a defective B cell response.


Subject(s)
COVID-19/genetics , Eye Diseases/virology , Tears/metabolism , Transcriptome , Aged , B-Lymphocytes/metabolism , COVID-19/pathology , COVID-19/virology , Eye Diseases/genetics , Female , High-Throughput Nucleotide Sequencing/methods , Humans , Keratins/metabolism , Male , SARS-CoV-2/isolation & purification , Sequence Analysis, RNA/methods , Skin/metabolism , Skin/pathology , Skin/virology , Tears/virology
15.
Curr Issues Mol Biol ; 43(1): 197-214, 2021 May 26.
Article in English | MEDLINE | ID: mdl-34073287

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and represents the most common form of senile dementia. Autophagy and mitophagy are cellular processes that play a key role in the aggregation of ß-amyloid (Aß) and tau phosphorylation. As a consequence, impairment of these processes leads to the progression of AD. Thus, interest is growing in the search for new natural compounds, such as Moringin (MOR), with neuroprotective, anti-amyloidogenic, antioxidative, and anti-inflammatory properties that could be used for AD prevention. However, MOR appears to be poorly soluble and stable in water. To increase its solubility MOR was conjugated with α-cyclodextrin (MOR/α-CD). In this work, it was evaluated if MOR/α-CD pretreatment was able to exert neuroprotective effects in an AD in vitro model through the evaluation of the transcriptional profile by next-generation sequencing (NGS). To induce the AD model, retinoic acid-differentiated SH-SY5Y cells were exposed to Aß1-42. The MOR/α-CD pretreatment reduced the expression of the genes which encode proteins involved in senescence, autophagy, and mitophagy processes. Additionally, MOR/α-CD was able to induce neuronal remodeling modulating the axon guidance, principally downregulating the Slit/Robo signaling pathway. Noteworthy, MOR/α-CD, modulating these important pathways, may induce neuronal protection against Aß1-42 toxicity as demonstrated also by the reduction of cleaved caspase 3. These data indicated that MOR/α-CD could attenuate the progression of the disease and promote neuronal repair.


Subject(s)
Alzheimer Disease/drug therapy , Cyclodextrins/chemistry , Isothiocyanates/pharmacology , Neuroprotective Agents/pharmacology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/prevention & control , Humans , Isothiocyanates/chemistry , Neuronal Plasticity , Transcriptome
16.
Int J Mol Sci ; 22(6)2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33804658

ABSTRACT

Neurodegenerative diseases represent a set of pathologies characterized by an irreversible and progressive, and a loss of neuronal cells in specific areas of the brain. Oxidative phosphorylation is a source of energy production by which many cells, such as the neuronal cells, meet their energy needs. Dysregulations of oxidative phosphorylation induce oxidative stress, which plays a key role in the onset of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). To date, for most neurodegenerative diseases, there are no resolute treatments, but only interventions capable of alleviating the symptoms or slowing the course of the disease. Therefore, effective neuroprotection strategies are needed. In recent years, natural products, such as curcuminoids, have been intensively explored and studied for their therapeutic potentials in several neurodegenerative diseases. Curcuminoids are, nutraceutical compouns, that owen several therapeutic properties such as anti-oxidant, anti-inflammatory and neuroprotective effects. In this context, the aim of this review was to provide an overview of preclinical and clinical evidence aimed to illustrate the antioxidant effects of curcuminoids in neurodegenerative diseases. Promising results from preclinical studies encourage the use of curcuminoids for neurodegeneration prevention and treatment.


Subject(s)
Antioxidants/pharmacology , Diarylheptanoids/pharmacology , Animals , Antioxidants/chemistry , Antioxidants/therapeutic use , Clinical Studies as Topic , Diarylheptanoids/chemistry , Diarylheptanoids/therapeutic use , Disease Management , Disease Models, Animal , Disease Susceptibility , Drug Evaluation, Preclinical , Humans , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/metabolism , Structure-Activity Relationship , Treatment Outcome
17.
Medicina (Kaunas) ; 57(4)2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33916982

ABSTRACT

Background and Objectives: Musculoskeletal injuries represent a pathological condition due to limited joint motility and morphological and functional alterations of the muscles. Temporomandibular disorders (TMDs) are pathological conditions due to alterations in the musculoskeletal system. TMDs mainly cause temporomandibular joint and masticatory muscle dysfunctions following trauma, along with various pathologies and inflammatory processes. TMD affects approximately 15% of the population and causes malocclusion problems and common symptoms such as myofascial pain and migraine. The aim of this work was to provide a transcriptomic profile of masticatory muscles obtained from TMD migraine patients compared to control. Materials and Methods: We used Next Generation Sequencing (NGS) technology to evaluate transcriptomes in masseter and temporalis muscle samples. Results: The transcriptomic analysis showed a prevalent downregulation of the genes involved in the myogenesis process. Conclusions: In conclusion, our findings suggest that the muscle regeneration process in TMD migraine patients may be slowed, therefore therapeutic interventions are needed to restore temporomandibular joint function and promote healing processes.


Subject(s)
Temporomandibular Joint Disorders , Transcriptome , Humans , Masseter Muscle , Masticatory Muscles , Regeneration/genetics , Temporomandibular Joint Disorders/genetics
18.
Cells ; 10(2)2021 01 30.
Article in English | MEDLINE | ID: mdl-33573156

ABSTRACT

HL-1 is a cell line that shows a phenotype similar to adult cardiomyocytes. All major cardiac cell types release extracellular vesicles (EVs) that emerge as key mediators of intercellular communication. EVs can mediate intercellular cross-talk through the transfer of specific microRNAs (miRNAs). MiRNAs are known to play important regulatory roles during tissue differentiation and regeneration processes. Furthermore, miRNAs have recently been shown to be involved in the proliferation of adult cardiomyocytes. In this context, the purpose of this study was to analyze the transcriptomic profile of miRNAs expressed from HL-1 cardiac muscle cell-derived EVs, using next generation sequencing (NGS). Specifically, our transcriptomic analysis showed that the EVs derived from our HL-1 cells contained miRNAs that induce blood vessel formation and increase cell proliferation. Indeed, our bioinformatics analysis revealed 26 miRNAs expressed in EVs derived from our HL-1 that target genes related to cardiovascular development. In particular, their targets are enriched for the following biological processes related to cardiovascular development: heart morphogenesis, positive regulation of angiogenesis, artery development, ventricular septum development, cardiac atrium development, and myoblast differentiation. Consequently, EVs could become important in the field of regenerative medicine.


Subject(s)
Extracellular Vesicles/metabolism , High-Throughput Nucleotide Sequencing/methods , MicroRNAs/genetics , Myocytes, Cardiac/metabolism , Allopurinol/metabolism , Cell Differentiation , Cell Proliferation , Glutathione/metabolism , Histidine/metabolism , Humans , Raffinose/metabolism
19.
Molecules ; 25(21)2020 Nov 07.
Article in English | MEDLINE | ID: mdl-33171772

ABSTRACT

Cannabidiol (CBD) is a non-psychoactive phytocannabinoid known for its beneficial effects including antioxidant and anti-inflammatory properties. Moreover, CBD is a compound with antidepressant, anxiolytic, anticonvulsant and antipsychotic effects. Thanks to all these properties, the interest of the scientific community for it has grown. Indeed, CBD is a great candidate for the management of neurological diseases. The purpose of our review is to summarize the in vitro and in vivo studies published in the last 15 years that describe the biochemical and molecular mechanisms underlying the effects of CBD and its therapeutic application in neurological diseases. CBD exerts its neuroprotective effects through three G protein coupled-receptors (adenosine receptor subtype 2A, serotonin receptor subtype 1A and G protein-coupled receptor 55), one ligand-gated ion channel (transient receptor potential vanilloid channel-1) and one nuclear factor (peroxisome proliferator-activated receptor γ). Moreover, the therapeutical properties of CBD are also due to GABAergic modulation. In conclusion, CBD, through multi-target mechanisms, represents a valid therapeutic tool for the management of epilepsy, Alzheimer's disease, multiple sclerosis and Parkinson's disease.


Subject(s)
Cannabidiol/therapeutic use , Nervous System Diseases/drug therapy , Animals , Anti-Anxiety Agents/therapeutic use , Anticonvulsants/therapeutic use , Antidepressive Agents/therapeutic use , Antipsychotic Agents/therapeutic use , Cannabinoids/therapeutic use , Female , Humans , Male , Mice , Mice, Inbred C57BL , Neuroprotective Agents/therapeutic use , PPAR gamma/metabolism , Rats , Rats, Wistar , Receptor, Serotonin, 5-HT1A/metabolism , Receptors, Adrenergic, alpha-2/metabolism , Receptors, Cannabinoid/metabolism , TRPV Cation Channels/metabolism
20.
Life (Basel) ; 10(10)2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33019509

ABSTRACT

More than 120 cannabinoids were isolated from Cannabis sativa. In particular, Cannabidiol (CBD) and Cannabigerol (CBG) represent the two most studied non-psychoactive cannabinoids. However, CBG is less studied and less data are available on its biological properties and influence on synaptic transmission. On the contrary, CBD is already known to modulate brain excitatory glutamate, inhibitory γ-aminobutyric acid (GABA) and dopamine neurotransmission. In this study, using Next-Generation Sequencing (NGS) technology, we evaluated how CBG (1 or 5 µM) and CBD (1 or 5 µM) influence the transcriptome of the main neurotransmission pathways in NSC-34 motor neuron-like cells. At first, we evaluated that CBG and CBD were not cytotoxic and decreased the expression of pro-apoptotic genes. CBG and CBD are able to influence the expression of the genes involved in glutamate, GABA and dopamine signaling. Interestingly, the transcriptional changes induced by CBG were similar compared to CBD.

SELECTION OF CITATIONS
SEARCH DETAIL
...