Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Cell Discov ; 10(1): 64, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834551

ABSTRACT

Effective antibody responses are essential to generate protective humoral immunity. Different inflammatory signals polarize T cells towards appropriate effector phenotypes during an infection or immunization. Th1 and Th2 cells have been associated with the polarization of humoral responses. However, T follicular helper cells (Tfh) have a unique ability to access the B cell follicle and support the germinal center (GC) responses by providing B cell help. We investigated the specialization of Tfh cells induced under type-1 and type-2 conditions. We first studied homogenous Tfh cell populations generated by adoptively transferred TCR-transgenic T cells in mice immunized with type-1 and type-2 adjuvants. Using a machine learning approach, we established a gene expression signature that discriminates Tfh cells polarized towards type-1 and type-2 response, defined as Tfh1 and Tfh2 cells. The distinct signatures of Tfh1 and Tfh2 cells were validated against datasets of Tfh cells induced following lymphocytic choriomeningitis virus (LCMV) or helminth infection. We generated single-cell and spatial transcriptomics datasets to dissect the heterogeneity of Tfh cells and their localization under the two immunizing conditions. Besides a distinct specialization of GC Tfh cells under the two immunizations and in different regions of the lymph nodes, we found a population of Gzmk+ Tfh cells specific for type-1 conditions. In human individuals, we could equally identify CMV-specific Tfh cells that expressed Gzmk. Our results show that Tfh cells acquire a specialized function under distinct types of immune responses and with particular properties within the B cell follicle and the GC.

2.
J Environ Manage ; 287: 112285, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33725659

ABSTRACT

Soil quality is fundamental for ecosystem long term functionality, productivity and resilience to current climatic changes. Despite its importance, soil is lost and degraded at dramatic rates worldwide. In Europe, the Mediterranean areas are a hotspot for soil erosion and land degradation due to a combination of climatic conditions, soils, geomorphology and anthropic pressure. Soil organic carbon (SOC) is considered a key indicator of soil quality as it relates to other fundamental soil functions supporting crucial ecosystem services. In the present study, the functional relationships among SOC and other important soil properties were investigated in the topsoil of 38 sites under different land cover and management, distributed over three Mediterranean regions under strong desertification risk, with the final aim to define critical SOC ranges for fast loss of important soil functionalities. The study sites belonged to private and public landowners seeking to adopt sustainable land management practices to support ecosystem sustainability and productivity of their land. Data showed a very clear relationship between SOC concentrations and the other analyzed soil properties: total nitrogen, bulk density, cation exchange capacity, available water capacity, microbial biomass, C fractions associated to particulate organic matter and to the mineral soil component and indirectly with net N mineralization. Below 20 g SOC kg-1, additional changes of SOC concentrations resulted in a steep variation of all the analyzed soil indicators, an order of magnitude higher than the changes occurring between 50 and 100 g SOC kg-1 and 3-4 times the changes observed at 20-50 g SOC kg-1. About half of the study sites showed average SOC concentration of the topsoil centimetres <20 g SOC kg-1. For these areas the level of SOC might hence be considered critical and immediate and effective recovery management plans are needed to avoid complete land degradation in the next future.


Subject(s)
Carbon , Soil , Carbon/analysis , Conservation of Natural Resources , Ecosystem , Europe , Mediterranean Region
3.
EBioMedicine ; 47: 427-435, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31481324

ABSTRACT

In recent years molecules involved on the immune synapse became successful targets for therapeutic immune modulation. CD6 has been extensively studied, yet, results regarding CD6 biology have been controversial, in spite of the ubiquitous presence of this molecule on virtually all CD4 T cells. We investigated the outcome of murine and human antibodies targeting CD6 domain 1. We found that CD6-targeting had a major impact on the functional specialization of CD4 cells, both human and murine. Differentiation of CD4 T cells towards a Foxp3+ Treg fate was prevented with increasing doses of anti-CD6, while Th1 polarization was favoured. No impact was observed on Th2 or Th17 specialization. These in vitro results provided an explanation for the dose-dependent outcome of in vivo anti-CD6 administration where the anti-inflammatory action is lost at the highest doses. Our data show that therapeutic targeting of the immune synapse may lead to paradoxical dose-dependent effects due to modification of T cell fate.


Subject(s)
Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Animals , Biomarkers , CD4-Positive T-Lymphocytes/cytology , Cell Adhesion Molecules, Neuronal/metabolism , Cell Differentiation , Fetal Proteins/metabolism , Humans , Lymphocyte Activation , Mice , Mice, Transgenic , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
4.
Methods Mol Biol ; 1585: 93-109, 2017.
Article in English | MEDLINE | ID: mdl-28477190

ABSTRACT

IL-9 is a pro-inflammatory cytokine implicated in certain immune-mediated diseases where chronic or acute inflammation of the mucosa plays an important role. Although initially described as being produced by what was then thought to be Th2 cells, it was later described that specialized lymphocyte populations are involved in IL-9 production. In addition to the classical Th9 effector (subset of CD4+ T cells), IL-9 is also produced by nonconventional lymphocytes, namely invariant natural killer T (iNKT) cells and innate lymphoid cells (ILCs). The identification of IL-9-producing cells by flow cytometry and cytokine measurements are pivotal for assigning and defining functional cellular phenotypes. In this chapter we provide methods for the in vitro polarization of IL-9-producing nonconventional lymphocytes and the best conditions for the detection of IL-9 production by intracellular staining.


Subject(s)
Interleukin-9/metabolism , T-Lymphocytes, Helper-Inducer/metabolism , Flow Cytometry , Humans , T-Lymphocyte Subsets/metabolism , Th1 Cells/metabolism , Th2 Cells/metabolism
5.
Mol Immunol ; 64(1): 36-45, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25467796

ABSTRACT

The use of immunogenic formulations targeting pattern recognition receptors towards modulation of immune responses is a promising strategy to develop better vaccines against infectious and malignant diseases. Molecules targeting TLR2 offer interesting properties that are relevant for vaccine development, including the possibility to covalently attach the lipidic ligands to the antigens. However, the type of immune response elicited by these formulations is still controversial. In this work, we used the model antigen ovalbumin (OVA) expressed in fusion with the bacterial lipoprotein OprI in order to characterize the immunomodulatory properties of this TLR ligand. Murine bone marrow-derived dendritic cells stimulated with OprI-OVA fusion lipoprotein produced high levels of the pro-inflammatory cytokines TNF-α and IL-6 and also IL-10, IL-12(p70) and IL-27, while TGF-ß and IL-23 were not detected. Using OT-II and OT-I mice, an enhancement of MHC class II and class I antigen presentation was observed for the OVA antigen in fusion with OprI. Mice immunized by intraperitoneal route with this fusion lipoprotein in prime-boost protocols developed strong specific antibody responses including IgG1, IgG2c, IgG2b, IgG3 and IgE. These results, together with data obtained by restimulation of splenocytes from the immunized mice, point to an immune response profile that does not correspond to a strict Th1 or Th2 polarization. Finally, in a challenge experiment using a melanoma syngeneic mouse model (B16-OVA), prophylactic inoculation with OprI fused with the unrelated antigen eGFP increased the tumor growth, while the fusion with the tumor-associated antigen OVA delayed the tumor growth and increased mice survival.


Subject(s)
Antigens/immunology , Bacterial Proteins/immunology , Immunity , Lipoproteins/immunology , Ovalbumin/immunology , Recombinant Fusion Proteins/immunology , Animals , Antibodies/immunology , Antigen Presentation/immunology , Bone Marrow Cells/cytology , CD4-Positive T-Lymphocytes/immunology , Cross Reactions/immunology , Cytokines/metabolism , Dendritic Cells/immunology , Immunization , Male , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice, Inbred C57BL , Spleen/cytology , Spleen/immunology
6.
J Transl Med ; 11: 18, 2013 Jan 17.
Article in English | MEDLINE | ID: mdl-23324136

ABSTRACT

BACKGROUND: ECBio has developed proprietary technology to consistently isolate, expand and cryopreserve a well-characterized population of stromal cells from human umbilical cord tissue (UCX® cells). The technology has recently been optimized in order to become compliant with Advanced Medicine Therapeutic Products. In this work we report the immunosuppressive capacity of UCX® cells for treating induced autoimmune inflammatory arthritis. METHODS: UCX® cells were isolated using a proprietary method (PCT/IB2008/054067) that yields a well-defined number of cells using a precise proportion between tissue digestion enzyme activity units, tissue mass, digestion solution volume and void volume. The procedure includes three recovery steps to avoid non-conformities related to cell recovery. UCX® surface markers were characterized by flow cytometry and UCX® capacity to expand in vitro and to differentiate into adipocyte, chondrocyte and osteoblast-like cells was evaluated. Mixed Lymphocyte Reaction (MLR) assays were performed to evaluate the effect of UCX® cells on T-cell activation and Treg conversion assays were also performed in vitro. Furthermore, UCX® cells were administered in vivo in both a rat acute carrageenan-induced arthritis model and rat chronic adjuvant induced arthritis model for arthritic inflammation. UCX® anti-inflammatory activity was then monitored over time. RESULTS: UCX® cells stained positive for CD44, CD73, CD90 and CD105; and negative for CD14, CD19 CD31, CD34, CD45 and HLA-DR; and were capable to differentiate into adipocyte, chondrocyte and osteoblast-like cells. UCX® cells were shown to repress T-cell activation and promote the expansion of Tregs better than bone marrow mesenchymal stem cells (BM-MSCs). Accordingly, xenogeneic UCX® administration in an acute carrageenan-induced arthritis model showed that human UCX® cells can reduce paw edema in vivo more efficiently than BM-MSCs. Finally, in a chronic adjuvant induced arthritis model, animals treated with intra-articular (i.a.) and intra-peritoneal (i.p.) infusions of UCX® cells showed faster remission of local and systemic arthritic manifestations. CONCLUSION: The results suggest that UCX® cells may be an effective and promising new approach for treating both local and systemic manifestations of inflammatory arthritis.


Subject(s)
Arthritis, Experimental/therapy , Arthritis/therapy , Mesenchymal Stem Cells/cytology , Umbilical Cord/cytology , Animals , Antigens, CD/immunology , Arthritis, Experimental/immunology , Cell Differentiation , Cell Proliferation , Flow Cytometry , Lymphocyte Culture Test, Mixed , Male , Mesenchymal Stem Cells/immunology , Rats , Rats, Wistar , Umbilical Cord/immunology
7.
Mol Pharmacol ; 59(5): 1061-8, 2001 May.
Article in English | MEDLINE | ID: mdl-11306688

ABSTRACT

Arachidonic acid (AA) is an important constituent of membrane phospholipids and can be liberated by activation of cellular phospholipases. AA modulates a variety of ion channels via diverse mechanisms, including both direct effects by AA itself and indirect actions through AA metabolites. Here, we report excitatory effects of AA on a cloned human inwardly rectifying K(+) channel, Kir2.3, which is highly expressed in the brain and heart and is critical in regulating cell excitability. AA potently and reversibly increased Kir2.3 current amplitudes in whole-cell and excised macro-patch recordings (maximal whole-cell response to AA was 258 +/- 21% of control, with an EC(50) value of 447 nM at -97 mV). This effect was apparently caused by an action of AA at an extracellular site and was not prevented by inhibitors of protein kinase C, free oxygen radicals, or AA metabolic pathways. Fatty acids that are not substrates for metabolism also potentiated Kir2.3 current. AA had no effect on the currents flowing through Kir2.1, Kir2.2, or Kir2.4 channels. Experiments with Kir2.1/2.3 chimeras suggested that, although AA may bind to both Kir2.1 and Kir2.3, the transmembrane and/or intracellular domains of Kir2.3 were essential for channel potentiation. These results argue for a direct mechanism of AA modulation of Kir2.3.


Subject(s)
Arachidonic Acid/metabolism , Potassium Channels, Inwardly Rectifying , Potassium Channels/metabolism , Animals , CHO Cells , Cricetinae , Electrophysiology , Humans , Membrane Proteins/metabolism , Membrane Proteins/physiology , Oxygen/metabolism , Potassium Channels/physiology , Protein Kinase C/metabolism , Transfection
8.
Neuroscience ; 76(3): 737-47, 1997 Feb.
Article in English | MEDLINE | ID: mdl-9135047

ABSTRACT

We have developed an antisense oligodeoxynucleotide to the dopamine transporter and used it to discriminate the behavioral properties of amphetamine and cocaine. In SK-N-MC cells permanently transfected with the dopamine transporter complementary DNA, treatment with 5 mM antisense oligodeoxynucleotide reduced dopamine uptake by 25% when compared to sense control. Unilateral intranigral administration of dopamine transporter antisense (50 microM) twice daily in freely moving rats for 2.5 days was sufficient to reduce dopamine transporter messenger RNA by 70% as measured by in situ hybridization, but not protein levels as measured by [3H]mazindol binding. However, intranigral treatment via implanted osmotic minipump over a period of seven days produced reductions in both dopamine transporter messenger RNA and protein levels (32%) at a dose of 500 pmol/day. These results indicate a longer half-life for the dopamine transporter than expected. Potassium chloride depolarization of ipsilateral striatal slices showed a greater than 200% increase in dopamine overflow on the antisense-treated side compared to the control side. Since imbalance of dopamine tone is known to induce rotational activity, we tested this behavioral paradigm in rats treated with various oligodeoxynucleotides at different doses and time-points. We have found that antisense-treated animals did not rotate spontaneously under any experimental conditions. Using various psychostimulants that target the dopamine transporter and increase dopamine levels, we found that the antisense-treated animals consistently rotated contralaterally in response to amphetamine (2 mg/kg), but not to cocaine (10 mg/kg) or nomifensine (10 mg/kg). These results bring in vivo evidence for a different mode of action of amphetamine and cocaine on the dopamine transporter and lend direct support to the view that amphetamine acts as a dopamine releaser, whereas cocaine acts by blocking dopamine transport.


Subject(s)
Amphetamine/pharmacology , Carrier Proteins/physiology , Cocaine/pharmacology , Dopamine Uptake Inhibitors/pharmacology , Membrane Glycoproteins , Membrane Transport Proteins , Nerve Tissue Proteins/physiology , Oligonucleotides, Antisense/pharmacology , Amphetamine/administration & dosage , Animals , Carrier Proteins/biosynthesis , Cells, Cultured , Cocaine/administration & dosage , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins , Dopamine Uptake Inhibitors/administration & dosage , Dopamine Uptake Inhibitors/metabolism , Functional Laterality/drug effects , Functional Laterality/physiology , In Situ Hybridization , Male , Mazindol/metabolism , Neostriatum/drug effects , Neostriatum/metabolism , Nerve Tissue Proteins/biosynthesis , Oligonucleotides, Antisense/administration & dosage , RNA, Messenger/biosynthesis , Rats , Rats, Sprague-Dawley , Stereotyped Behavior/drug effects
9.
Mol Pharmacol ; 46(1): 51-7, 1994 Jul.
Article in English | MEDLINE | ID: mdl-8058056

ABSTRACT

Dopamine D2 autoreceptors found on nigrostriatal dopaminergic neurons are thought to inhibit dopamine release, tyrosine hydroxylase activation, and spontaneous firing rate. It is likely that these receptors play an important role in moderating the behavioral response to cocaine, but the lack of potent selective autoreceptor ligands has made it difficult to assess this contribution. We have developed an antisense phosphorothioate oligodeoxynucleotide (ODN) against D2 receptor mRNA, which was used to reduce levels of D2 receptors in vitro and in vivo. Unilateral administration of antisense ODN, via intracerebral cannula, into the substantia nigra of rats for several days caused dramatic contralateral rotational behavior in response to a subcutaneous injection of cocaine. This effect was maximal by 10 min after injection of cocaine and lasted for > 30 min; without cocaine, no spontaneous rotational behavior was noted. In striatal slices, the potency of sulpiride, a D2 antagonist, in enhancing electrically stimulated dopamine release was significantly reduced on the antisense-treated side; this is consistent with a decrease in the striatal D2 autoreceptor population. As measured by quantitative autoradiography, administration of antisense ODN caused a loss of approximately 40% of nigral D2 receptor [125I]iodosulpride binding, compared with the untreated side. In vitro, treatment of WERI-27 retinoblastoma cells with D2 antisense ODN at a concentration of 1 microM reduced D2 receptor levels by 57% after 3 days. The robustness of cocaine-induced rotation and the impaired ability of sulpiride to enhance dopamine release from slices suggest that nigrostriatal D2 autoreceptors play a direct role in reducing the motor response to cocaine administration. Furthermore, the absence of spontaneous rotation in antisense ODN-treated animals suggests that autoreceptor effects are masked by compensatory mechanisms during normal behavior.


Subject(s)
Cocaine/pharmacology , Oligonucleotides, Antisense/pharmacology , Receptors, Dopamine D2/metabolism , Substantia Nigra/metabolism , Animals , Base Sequence , Cells, Cultured , Dopamine/metabolism , Male , Molecular Sequence Data , Oligonucleotides, Antisense/administration & dosage , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D2/drug effects , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/physiology , Substantia Nigra/drug effects , Thionucleotides/administration & dosage
10.
J Comp Neurol ; 337(4): 640-54, 1993 Nov 22.
Article in English | MEDLINE | ID: mdl-7904615

ABSTRACT

Aromatic L-amino acid decarboxylase (AAAD) is the second enzyme in the sequence leading to the synthesis of catecholamines or serotonin. Antisense riboprobes for aromatic L-amino acid decarboxylase mRNA were used to map the gene in mouse brain by in situ hybridization. The substantia nigra, the ventral tegmental nucleus, the dorsal raphe nucleus, the locus coeruleus, and the olfactory bulb contained the highest signal for AAAD mRNA. After treatment with the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), the signal disappeared in the substantia nigra, decreased somewhat in the ventral tegmental area, and remained unchanged in the dorsal raphe nucleus. Hypothalamic and cerebellar Purkinje neurons known to contain histidine decarboxylase or glutamic acid decarboxylase, respectively, were unlabeled by the probes. However, neurons in the deep layers of the frontal cortex, many thalamic nuclei, and the pyramidal neurons of the hippocampus were lightly to moderately labeled for mouse AAAD mRNA. The presence of AAAD message in these neurons suggests that the enzyme has functions other than that for the synthesis of the classical biogenic amine neurotransmitters.


Subject(s)
Aromatic-L-Amino-Acid Decarboxylases/metabolism , Brain/enzymology , RNA, Messenger/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/analogs & derivatives , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Animals , Blotting, Northern , Blotting, Southern , Brain/anatomy & histology , Brain Mapping , Cloning, Molecular , Dopamine Agents/pharmacology , Immunohistochemistry , In Situ Hybridization , Male , Mice , RNA Probes
11.
Neurochem Int ; 21(2): 275-9, 1992 Sep.
Article in English | MEDLINE | ID: mdl-1303156

ABSTRACT

Sense mRNA coding for bovine adrenal medulla aromatic L-amino acid decarboxylase (AADC) was expressed following microinjection into Xenopus laevis oocytes. The expressed enzyme activity was stereoselective for L-5-hydroxytryptophan and L-DOPA and blocked by NSD-1015 an inhibitor of AADC. Heating the expressed enzyme at 55 degrees C resulted in a parallel loss of activity towards both substrates. Our findings are consistent with the prevailing notion that a single enzyme is able to decarboxylate both substrates in vivo.


Subject(s)
Aromatic-L-Amino-Acid Decarboxylases/biosynthesis , Aromatic-L-Amino-Acid Decarboxylases/genetics , Oocytes/physiology , RNA, Messenger/metabolism , Adrenal Glands/enzymology , Animals , Cattle , Cloning, Molecular , DNA/genetics , DNA/isolation & purification , Female , Gene Library , Kinetics , Microinjections , Protein Biosynthesis , RNA, Messenger/administration & dosage , Transcription, Genetic , Xenopus laevis
12.
J Neurochem ; 54(3): 787-91, 1990 Mar.
Article in English | MEDLINE | ID: mdl-2137529

ABSTRACT

Aromatic L-amino acid decarboxylase (AAAD) activity of rat retina increases when animals are placed in a lighted environment from the dark. The increase of activity can be inhibited by administering the selective dopamine D1 receptor agonist SKF 38393, but not the selective D2 agonist quinpirole, or apomorphine. Conversely, in the dark, enzyme activity can be enhanced by administering the selective D1 antagonist SCH 23390 or haloperidol, but not the selective D2 antagonist (-)-sulpiride. Furthermore, in animals exposed to room light for 3 h, the D1 agonist SKF 38393 reduced retinal AAAD activity, and this effect was prevented by prior administration of SCH 23390. In contrast, quinpirole had little or no effect when administered to animals in the light. Kinetic analysis indicated that the apparent Vmax for the enzyme increases with little change in the apparent Km for the substrate 3,4-dihydroxyphenylalanine or the cofactor pyridoxal-5'-phosphate. We suggest that dopamine released in the dark tonically occupies D1 receptors and suppresses AAAD activity. When the room light is turned on, D1 receptors are vacated and selective D1 agonists can either prevent the rise of AAAD or reverse light-enhanced AAAD activity.


Subject(s)
Aromatic-L-Amino-Acid Decarboxylases/metabolism , Receptors, Dopamine/physiology , Retina/enzymology , 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology , Animals , Benzazepines/pharmacology , Dopamine Antagonists , Dose-Response Relationship, Drug , Kinetics , Light , Male , Rats , Rats, Inbred Strains , Receptors, Dopamine D1 , Retina/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...