Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 80: 129108, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36538993

ABSTRACT

For the past two decades, BTK a tyrosine kinase and member of the Tec family has been a drug target of significant interest due to its potential to selectively treat various B cell-mediated diseases such as CLL, MCL, RA, and MS. Owning to the challenges encountered in identifying drug candidates exhibiting the potency block B cell activation via BTK inhibition, the pharmaceutical industry has relied on the use of covalent/irreversible inhibitors to address this unmet medical need. Herein, we describe a medicinal chemistry campaign to identify structurally diverse reversible BTK inhibitors originating from HITS identified using a fragment base screen. The leads were optimized to improve the potency and in vivo ADME properties resulting in a structurally distinct chemical series used to develop and validate a novel in vivo CD69 and CD86 PD assay in rodents.


Subject(s)
Protein Kinase Inhibitors , Protein-Tyrosine Kinases , Mice , Animals , Agammaglobulinaemia Tyrosine Kinase , Protein Kinase Inhibitors/chemistry , Disease Models, Animal , B7-2 Antigen
2.
Front Aging Neurosci ; 14: 890823, 2022.
Article in English | MEDLINE | ID: mdl-35754955

ABSTRACT

There has been long-term interest in drugging the PINK1-Parkin pathway with therapeutics as a treatment for Parkinson's disease (PD). Despite significant structural data on Parkin as well as the PINK1 kinase and the multiple conformational changes it undergoes, activation of these targets is non-trivial. This review highlights small molecule screening results that suggests that activation of Parkin biochemically does not necessarily translate to activation of Parkin within cells. There are also issues with activation of PINK1 with kinetin analogs, which do not appear to rescue rodent models of PD. The counter-measure of activating the mitophagy pathway with deubiquitinase (DUB) inhibitors such as USP30 inhibitors is progressing in the clinic for kidney disease and the proof of biology for this target will be tested in these trials. An alternative mechanism of activating Parkin in response to oxidative stress via Parkin phosphorylation by the AMPK-ULK1 pathway may be a simpler way to lower the energy barrier Parkin activation.

3.
iScience ; 25(1): 103650, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35024585

ABSTRACT

Pharmacological activation of the E3 ligase Parkin represents a rational therapeutic intervention for the treatment of Parkinson's disease. Here we identify several compounds that enhance the activity of wildtype Parkin in the presence of phospho-ubiquitin and act as positive allosteric modulators (PAMs). While these compounds activate Parkin in a series of biochemical assays, they do not act by thermally destabilizing Parkin and fail to enhance the Parkin translocation rate to mitochondria or to enact mitophagy in cell-based assays. We conclude that in the context of the cellular milieu the therapeutic window to pharmacologically activate Parkin is very narrow.

4.
Bioorg Med Chem ; 44: 116275, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34314938

ABSTRACT

Bruton's tyrosine kinase (BTK) is an essential node on the BCR signaling in B cells, which are clinically validated to play a critical role in B-cell lymphomas and various auto-immune diseases such as Multiple Sclerosis (MS), Pemphigus, and rheumatoid arthritis (RA). Although non-selective irreversible BTK inhibitors have been approved for oncology, due to the emergence of drug resistance in B-cell lymphoma associated with covalent inhibitor, there an unmet medical need to identify reversible, selective, potent BTK inhibitor as viable therapeutics for patients. Herein, we describe the identification of Hits and subsequence optimization to improve the physicochemical properties, potency and kinome selectivity leading to the discovery of a novel class of BTK inhibitors. Utilizing Met ID and structure base design inhibitors were synthesized with increased in vivo metabolic stability and oral exposure in rodents suitable for advancing to lead optimization.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Drug Discovery , Protein Kinase Inhibitors/pharmacokinetics , Agammaglobulinaemia Tyrosine Kinase/metabolism , Dose-Response Relationship, Drug , Humans , Molecular Structure , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Structure-Activity Relationship
5.
Bioorg Med Chem ; 27(13): 2905-2913, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31138459

ABSTRACT

Since the approval of ibrutinib for the treatment of B-cell malignancies in 2012, numerous clinical trials have been reported using covalent inhibitors to target Bruton's tyrosine kinase (BTK) for oncology indications. However, a formidable challenge for the pharmaceutical industry has been the identification of reversible, selective, potent molecules for inhibition of BTK. Herein, we report application of Tethering-fragment-based screens to identify low molecular weight fragments which were further optimized to improve on-target potency and ADME properties leading to the discovery of reversible, selective, potent BTK inhibitors suitable for pre-clinical proof-of-concept studies.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Humans , Protein Kinase Inhibitors/pharmacology
6.
Sci Rep ; 8(1): 13438, 2018 09 07.
Article in English | MEDLINE | ID: mdl-30194389

ABSTRACT

Protein interacting with C kinase (PICK1) is a scaffolding protein that is present in dendritic spines and interacts with a wide array of proteins through its PDZ domain. The best understood function of PICK1 is regulation of trafficking of AMPA receptors at neuronal synapses via its specific interaction with the AMPA GluA2 subunit. Disrupting the PICK1-GluA2 interaction has been shown to alter synaptic plasticity, a molecular mechanism of learning and memory. Lack of potent, selective inhibitors of the PICK1 PDZ domain has hindered efforts at exploring the PICK1-GluA2 interaction as a therapeutic target for neurological diseases. Here, we report the discovery of PICK1 small molecule inhibitors using a structure-based drug design strategy. The inhibitors stabilized surface GluA2, reduced Aß-induced rise in intracellular calcium concentrations in cultured neurons, and blocked long term depression in brain slices. These findings demonstrate that it is possible to identify potent, selective PICK1-GluA2 inhibitors which may prove useful for treatment of neurodegenerative disorders.


Subject(s)
Amyloid beta-Peptides/metabolism , Brain/metabolism , Carrier Proteins/antagonists & inhibitors , Dendritic Spines/metabolism , Neurodegenerative Diseases/metabolism , Nuclear Proteins/antagonists & inhibitors , Synapses/metabolism , Animals , Brain/pathology , Calcium/metabolism , Calcium Signaling , Carrier Proteins/metabolism , Cell Cycle Proteins , Dendritic Spines/pathology , Drug Design , Mice , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/pathology , Nuclear Proteins/metabolism , PDZ Domains , Receptors, AMPA/metabolism , Synapses/pathology
7.
Bioorg Med Chem Lett ; 28(10): 1964-1971, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29636220

ABSTRACT

Germinal center kinase-like kinase (GLK, also known as MAP4K3) has been hypothesized to have an effect on key cellular activities, including inflammatory responses. GLK is required for activation of protein kinase C-θ (PKCθ) in T cells. Controlling the activity of T helper cell responses could be valuable for the treatment of autoimmune diseases. This approach circumvents previous unsuccessful approaches to target PKCθ directly. The use of structure based drug design, aided by the first crystal structure of GLK, led to the discovery of several inhibitors that demonstrate potent inhibition of GLK biochemically and in relevant cell lines.


Subject(s)
Protein Kinase C-theta/metabolism , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Animals , Binding Sites , Cell Line , Humans , Inhibitory Concentration 50 , Interleukin-2/metabolism , Mice , Mice, Knockout , Molecular Docking Simulation , Phosphorylation/drug effects , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Structure, Tertiary , Pyridines/chemistry , Pyridines/metabolism , Pyridines/pharmacology , Structure-Activity Relationship , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
8.
Protein Sci ; 27(3): 672-680, 2018 03.
Article in English | MEDLINE | ID: mdl-29280296

ABSTRACT

The membrane protein interacting with kinase C1 (PICK1) plays a trafficking role in the internalization of neuron receptors such as the amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor. Reduction of surface AMPA type receptors on neurons reduces synaptic communication leading to cognitive impairment in progressive neurodegenerative diseases such as Alzheimer disease. The internalization of AMPA receptors is mediated by the PDZ domain of PICK1 which binds to the GluA2 subunit of AMPA receptors and targets the receptor for internalization through endocytosis, reducing synaptic communication. We planned to block the PICK1-GluA2 protein-protein interaction with a small molecule inhibitor to stabilize surface AMPA receptors as a therapeutic possibility for neurodegenerative diseases. Using a fluorescence polarization assay, we identified compound BIO124 as a modest inhibitor of the PICK1-GluA2 interaction. We further tried to improve the binding affinity of BIO124 using structure-aided drug design but were unsuccessful in producing a co-crystal structure using previously reported crystallography methods for PICK1. Here, we present a novel method through which we generated a co-crystal structure of the PDZ domain of PICK1 bound to BIO124.


Subject(s)
Carrier Proteins/chemistry , Carrier Proteins/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Binding Sites/drug effects , Crystallography , Drug Design , Humans , Models, Molecular , Molecular Conformation , PDZ Domains , Protein Binding/drug effects , Receptors, AMPA/metabolism , Structure-Activity Relationship
10.
Protein Sci ; 26(2): 152-162, 2017 02.
Article in English | MEDLINE | ID: mdl-27727493

ABSTRACT

Germinal-center kinase-like kinase (GLK, Map4k3), a GCK-I family kinase, plays multiple roles in regulating apoptosis, amino acid sensing, and immune signaling. We describe here the crystal structure of an activation loop mutant of GLK kinase domain bound to an inhibitor. The structure reveals a weakly associated, activation-loop swapped dimer with more than 20 amino acids of ordered density at the carboxy-terminus. This C-terminal PEST region binds intermolecularly to the hydrophobic groove of the N-terminal domain of a neighboring molecule. Although the GLK activation loop mutant crystallized demonstrates reduced kinase activity, its structure demonstrates all the hallmarks of an "active" kinase, including the salt bridge between the C-helix glutamate and the catalytic lysine. Our compound displacement data suggests that the effect of the Ser170Ala mutation in reducing kinase activity is likely due to its effect in reducing substrate peptide binding affinity rather than reducing ATP binding or ATP turnover. This report details the first structure of GLK; comparison of its activation loop sequence and P-loop structure to that of Map4k4 suggests ideas for designing inhibitors that can distinguish between these family members to achieve selective pharmacological inhibitors.


Subject(s)
Mutation, Missense , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/chemistry , Amino Acid Substitution , Crystallography, X-Ray , Humans , Protein Domains , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Protein Structure, Secondary
11.
PLoS One ; 11(11): e0165983, 2016.
Article in English | MEDLINE | ID: mdl-27832137

ABSTRACT

MLKL is a pore forming pseudokinase involved in the final stage of necroptosis, a form of programmed cell death. Its phosphorylation by RIPK3 is necessary for triggering necroptosis but not for triggering apoptosis, which makes it a unique target for pharmacological inhibition to block necroptotic cell death. This mechanism has been described as playing a role in disease progression in neurodegenerative and inflammatory diseases. A type II kinase inhibitor (cpd 1) has been described that reportedly binds to the MLKL pseudokinase domain and prevents necroptosis. Here we describe five compounds that bind to the MLKL ATP-binding site, however the four MLKL-selective compounds have no activity in rescuing cells from necroptosis. We use kinase selectivity panels, crystallography and a new conformationally sensitive method of measuring protein conformational changes (SHG) to confirm that the one previously reported compound that can rescue cells (cpd 1) is a non-selective type II inhibitor that also inhibits the upstream kinase RIPK1. Although this compound can shift the GFE motif of the activation loop to an "out" position, the accessibility of the key residue Ser358 in the MLKL activation loop is not affected by compound binding to the MLKL active site. Our studies indicate that an ATP-pocket inhibitor of the MLKL pseudokinase domain does not have any impact on the necroptosis pathway, which is contrary to a previously reported study.


Subject(s)
Adenosine Triphosphate/metabolism , Cell Death/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Binding Sites/drug effects , Crystallography, X-Ray , HSP90 Heat-Shock Proteins/metabolism , Humans , Jurkat Cells , Models, Molecular , Phosphorylation/drug effects , Protein Binding/drug effects , Protein Conformation/drug effects , Protein Kinases/chemistry , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
12.
BMC Struct Biol ; 16(1): 7, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27246200

ABSTRACT

BACKGROUND: The nuclear hormone receptor RORγ regulates transcriptional genes involved in the production of the pro-inflammatory interleukin IL-17 which has been linked to autoimmune diseases such as rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease. This transcriptional activity of RORγ is modulated through a protein-protein interaction involving the activation function 2 (AF2) helix on the ligand binding domain of RORγ and a conserved LXXLL helix motif on coactivator proteins. Our goal was to develop a RORγ specific inverse agonist that would help down regulate pro-inflammatory gene transcription by disrupting the protein protein interaction with coactivator proteins as a therapeutic agent. RESULTS: We identified a novel series of synthetic benzoxazinone ligands having an agonist (BIO592) and inverse agonist (BIO399) mode of action in a FRET based assay. We show that the AF2 helix of RORγ is proteolytically sensitive when inverse agonist BIO399 binds. Using x-ray crystallography we show how small modifications on the benzoxazinone agonist BIO592 trigger inverse agonism of RORγ. Using an in vivo reporter assay, we show that the inverse agonist BIO399 displayed specificity for RORγ over ROR sub-family members α and ß. CONCLUSION: The synthetic benzoxazinone ligands identified in our FRET assay have an agonist (BIO592) or inverse agonist (BIO399) effect by stabilizing or destabilizing the agonist conformation of RORγ. The proteolytic sensitivity of the AF2 helix of RORγ demonstrates that it destabilizes upon BIO399 inverse agonist binding perturbing the coactivator protein binding site. Our structural investigation of the BIO592 agonist and BIO399 inverse agonist structures identified residue Met358 on RORγ as the trigger for RORγ specific inverse agonism.


Subject(s)
Benzoxazines/chemistry , Drug Inverse Agonism , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Benzoxazines/metabolism , Binding Sites , Crystallography, X-Ray , Escherichia coli/metabolism , Fluorescence Resonance Energy Transfer , Humans , Ligands , Molecular Dynamics Simulation , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Protein Binding , Protein Structure, Secondary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification
13.
Bioorg Med Chem Lett ; 26(10): 2459-2463, 2016 05 15.
Article in English | MEDLINE | ID: mdl-27080181

ABSTRACT

RORγ plays a critical role in controlling a pro-inflammatory gene expression program in several lymphocyte lineages including T cells, γδ T cells, and innate lymphoid cells. RORγ-mediated inflammation has been linked to susceptibility to Crohn's disease, arthritis, and psoriasis. Thus inverse agonists of RORγ have the potential of modulating inflammation. Our goal was to optimize two RORγ inverse agonists: T0901317 from literature and 1 that we obtained from internal screening. We used information from internal X-ray structures to design two libraries that led to a new biaryl series.


Subject(s)
Hydrocarbons, Fluorinated/chemistry , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Structure-Activity Relationship , Sulfonamides/chemistry , Binding Sites , Crystallography, X-Ray , Drug Design , Hydrocarbons, Fluorinated/pharmacology , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Nuclear Receptor Subfamily 1, Group F, Member 3/chemistry , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Sulfonamides/pharmacology
14.
Bioorg Med Chem Lett ; 25(15): 2991-7, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26048806

ABSTRACT

RORγt is a pivotal regulator of a pro-inflammatory gene expression program implicated in the pathology of several major human immune-mediated diseases. Evidence from mouse models demonstrates that genetic or pharmacological inhibition of RORγ activity can block the production of pathogenic cytokines, including IL-17, and convey therapeutic benefit. We have identified and developed a biaryl-carboxylamide series of RORγ inverse agonists via a structure based design approach. Co-crystal structures of compounds 16 and 48 supported the design approach and confirmed the key interactions with RORγ protein; the hydrogen bonding with His479 was key to the significant improvement in inverse agonist effect. The results have shown this is a class of potent and selective RORγ inverse agonists, with demonstrated oral bioavailability in rodents.


Subject(s)
Amides/chemistry , Amides/pharmacology , Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacology , Drug Inverse Agonism , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Amides/pharmacokinetics , Animals , Biphenyl Compounds/pharmacokinetics , Cell Line , Cytokines/immunology , Drug Discovery , Humans , Hydrogen Bonding , Interleukin-17/immunology , Mice , Molecular Docking Simulation , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , Rats
15.
Bioorg Med Chem Lett ; 25(3): 474-80, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25575657

ABSTRACT

PIM kinases are implicated in variety of cancers by promoting cell survival and proliferation and are targets of interest for therapeutic intervention. We have identified a low-nanomolar pan-PIM inhibitor (PIM1/2/3 potency 5:14:2nM) using structure based modeling. The crystal structure of this compound with PIM1 confirmed the predicted binding mode and protein-ligand interactions except those in the acidic ribose pocket. We show the SAR suggesting the importance of having a hydrogen bond donor in this pocket for inhibiting PIM2; however, this interaction is not important for inhibiting PIM1 or PIM3. In addition, we report the discovery of a new class of PIM inhibitors by using computational de novo design tool implemented in MOE software (Chemical Computing Group). These inhibitors have a different interaction profile.


Subject(s)
Drug Design , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Binding Sites , Crystallography, X-Ray , Hydrogen Bonding , Molecular Dynamics Simulation , Protein Binding , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Protein Structure, Tertiary , Proto-Oncogene Proteins c-pim-1/metabolism , Static Electricity , Structure-Activity Relationship
16.
Bioorg Med Chem ; 21(14): 4011-9, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23647822

ABSTRACT

Keap1 binds to the Nrf2 transcription factor to promote its degradation, resulting in the loss of gene products that protect against oxidative stress. While cell-active small molecules have been identified that modify cysteines in Keap1 and effect the Nrf2 dependent pathway, few act through a non-covalent mechanism. We have identified and characterized several small molecule compounds that specifically bind to the Keap1 Kelch-DC domain as measured by NMR, native mass spectrometry and X-ray crystallography. One compound upregulates Nrf2 response genes measured by a luciferase cell reporter assay. The non-covalent inhibition strategy presents a reasonable course of action to avoid toxic side-effects due to non-specific cysteine modification.


Subject(s)
Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/metabolism , NF-E2-Related Factor 2/antagonists & inhibitors , NF-E2-Related Factor 2/metabolism , Small Molecule Libraries/pharmacology , Carrier Proteins , Crystallography, X-Ray , Intracellular Signaling Peptides and Proteins/chemistry , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2/chemistry , Protein Binding/drug effects , Protein Structure, Tertiary , Spectrometry, Mass, Electrospray Ionization , Structure-Activity Relationship , Thermodynamics
17.
Drug Discov Today Technol ; 10(4): e509-15, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24451642

ABSTRACT

Several advances in the fields of crystallography, molecular modeling, biophysical assays and chemistry are converging to making protein-protein interaction targets more amenable to drug design. These include steps towards improving crystallization of protein-protein complexes, identifying the clusters of residues that constitute putative small molecule binding 'hot spots', generating new methods for detecting the binding of small molecules to target proteins, and generating custom libraries via diversity oriented synthesis to enable the identification of natural-product-like hits.


Subject(s)
Drug Design , Protein Interaction Mapping , Crystallization , Protein Binding , Proteins/chemistry , Small Molecule Libraries
18.
Bioorg Med Chem Lett ; 22(12): 4033-7, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22607669

ABSTRACT

This Letter reports the optimization of a pyrrolopyrimidine series as dual inhibitors of Aurora A/B kinases. This series derived from a pyrazolopyrimidine series previously reported as inhibitors of aurora kinases and CDKs. In an effort to improve the selectivity of this chemotype, we switched to the pyrrolopyrimidine core which allowed functionalization on C-2. In addition, the modeling rationale was based on superimposing the structures of Aurora-A kinase and CDK2 which revealed enough differences leading to a path for selectivity improvement. The synthesis of the new series of pyrrolopyrimidine analogs relied on the development of a different route for the two key intermediates 7 and 19 which led to analogs with both tunable activity against CDK1 and maintained cell potency.


Subject(s)
Antineoplastic Agents/chemical synthesis , CDC2 Protein Kinase/chemistry , Cyclin-Dependent Kinase 2/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrimidines/chemical synthesis , Pyrroles/chemical synthesis , Antineoplastic Agents/pharmacology , Aurora Kinases , Binding Sites , Cell Cycle Checkpoints/drug effects , Cell Line , Drug Design , Humans , Models, Molecular , Molecular Structure , Protein Binding , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/chemistry , Pyrimidines/pharmacology , Pyrroles/pharmacology , Structural Homology, Protein , Structure-Activity Relationship
19.
Bioorg Med Chem Lett ; 22(5): 2070-4, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22326168

ABSTRACT

Since the early 2000s, the Aurora kinases have become major targets of oncology drug discovery particularly Aurora-A and Aurora-B kinases (AKA/AKB) for which the selective inhibition in cells lead to different phenotypes. In addition to targeting these Aurora kinases involved in mitosis, CDK1 has been added as a primary inhibition target in hopes of enhancing the cytotoxicity of our chemotypes harboring the pyrazolopyrimidine core. SAR optimization of this series using the AKA, AKB and CDK1 biochemical assays led to the discovery of the compound 7h which combines strong potency against the 3 kinases with an acceptable microsomal stability. Finally, switching from a primary amide to a two-substituted pyrrolidine amide gave rise to compound 15a which exhibited the desired AKA/CDK1 inhibition phenotype in cells but showed moderate activity in animal models using HCT116 tumor cell lines.


Subject(s)
CDC2 Protein Kinase/antagonists & inhibitors , Colonic Neoplasms/drug therapy , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrimidines/chemistry , Pyrimidines/therapeutic use , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Aurora Kinase A , Aurora Kinase B , Aurora Kinases , CDC2 Protein Kinase/metabolism , Cell Line , Colon/drug effects , Colon/pathology , Colonic Neoplasms/pathology , HCT116 Cells , Humans , Mice , Models, Molecular , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/metabolism , Pyrazoles/chemistry , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Rats , Structure-Activity Relationship
20.
Bioorg Med Chem Lett ; 21(18): 5633-7, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21798738

ABSTRACT

A novel class of pyrazolopyrimidine-sulfonamides was discovered as selective dual inhibitors of aurora kinase A (AKA) and cyclin-dependent kinase 1 (CDK1). These inhibitors were originally designed based on an early lead (compound I). SAR development has led to the discovery of potent inhibitors with single digit nM IC(50)s towards both AKA and CDK1. An exemplary compound 1a has demonstrated good efficacy in an HCT116 colon cancer xenograft model.


Subject(s)
Antineoplastic Agents/pharmacology , CDC2 Protein Kinase/antagonists & inhibitors , Colonic Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrimidines/pharmacology , Sulfonamides/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Aurora Kinase A , Aurora Kinases , CDC2 Protein Kinase/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Chemistry Techniques, Synthetic , Colonic Neoplasms/pathology , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Design , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Humans , Mice , Mice, Nude , Models, Molecular , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...