Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Radiology ; 308(1): e230653, 2023 07.
Article in English | MEDLINE | ID: mdl-37462497

ABSTRACT

Background Differences in the clinical and radiological characteristics of SARS-CoV-2 Omicron subvariants have not been well studied. Purpose To compare clinical disease severity and radiologically severe pneumonia in patients with COVID-19 hospitalized during a period of either Omicron BA.1/BA.2 or Omicron BA.5 subvariant predominance. Materials and Methods This multicenter retrospective study, included patients registered in the Korean Imaging Cohort of COVID-19 database who were hospitalized for COVID-19 between January and December 2022. Publicly available relative variant genome frequency data were used to determine the dominant periods of Omicron BA.1/BA.2 subvariants (January 17 to June 20, 2022) and the Omicron BA.5 subvariant (July 4 to December 5, 2022). Clinical outcomes and imaging pneumonia outcomes based on chest radiography and CT were compared among predominant subvariants using multivariable analyses adjusted for covariates. Results Of 1916 confirmed patients with COVID-19 (mean age, 72 years ± 16 [SD]; 1019 males), 1269 were registered during the Omicron BA.1/BA.2 subvariant dominant period and 647 during the Omicron BA.5 subvariant dominant period. Patients in the BA.5 group showed lower odds of high-flow O2 requirement (adjusted odds ratio [OR], 0.75 [95% CI: 0.57, 0.99]; P = .04), mechanical ventilation (adjusted OR, 0.49 [95% CI: 0.34, 0.72]; P < .001]), and death (adjusted OR, 0.47 [95% CI: 0.33, 0.68]; P <.001) than those in the BA.1/BA.2 group. Additionally, the BA.5 group had lower odds of severe pneumonia on chest radiographs (adjusted OR, 0.68 [95% CI: 0.53, 0.88]; P = .004) and higher odds of atypical pattern pneumonia on CT images (adjusted OR, 1.81 [95% CI: 1.26, 2.58]; P = .001) than the BA.1/BA.2 group. Conclusions Patients hospitalized during the period of Omicron BA.5 subvariant predominance had lower odds of clinical and pneumonia severity than those hospitalized during the period of Omicron BA.1/BA.2 predominance, even after adjusting for covariates. See also the editorial by Hammer in this issue.


Subject(s)
COVID-19 , SARS-CoV-2 , Male , Humans , Aged , COVID-19/diagnostic imaging , Retrospective Studies , Databases, Factual , Odds Ratio
2.
Radiology ; 306(3): e221795, 2023 03.
Article in English | MEDLINE | ID: mdl-36165791

ABSTRACT

Background Few reports have evaluated the effect of the SARS-CoV-2 variant and vaccination on the clinical and imaging features of COVID-19. Purpose To evaluate and compare the effect of vaccination and variant prevalence on the clinical and imaging features of infections by the SARS-CoV-2. Materials and Methods Consecutive adults hospitalized for confirmed COVID-19 at three centers (two academic medical centers and one community hospital) and registered in a nationwide open data repository for COVID-19 between August 2021 and March 2022 were retrospectively included. All patients had available chest radiographs or CT images. Patients were divided into two groups according to predominant variant type over the study period. Differences between clinical and imaging features were analyzed with use of the Pearson χ2 test, Fisher exact test, or the independent t test. Multivariable logistic regression analyses were used to evaluate the effect of variant predominance and vaccination status on imaging features of pneumonia and clinical severity. Results Of the 2180 patients (mean age, 57 years ± 21; 1171 women), 1022 patients (47%) were treated during the Delta variant predominant period and 1158 (53%) during the Omicron period. The Omicron variant prevalence was associated with lower pneumonia severity based on CT scores (odds ratio [OR], 0.71 [95% CI: 0.51, 0.99; P = .04]) and lower clinical severity based on intensive care unit (ICU) admission or in-hospital death (OR, 0.43 [95% CI: 0.24, 0.77; P = .004]) than the Delta variant prevalence. Vaccination was associated with the lowest odds of severe pneumonia based on CT scores (OR, 0.05 [95% CI: 0.03, 0.13; P < .001]) and clinical severity based on ICU admission or in-hospital death (OR, 0.15 [95% CI: 0.07, 0.31; P < .001]) relative to no vaccination. Conclusion The SARS-CoV-2 Omicron variant prevalence and vaccination were associated with better clinical outcomes and lower severe pneumonia risk relative to Delta variant prevalence. © RSNA, 2022 Supplemental material is available for this article. See also the editorial by Little in this issue.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Humans , Female , Middle Aged , Hospital Mortality , Retrospective Studies
3.
Radiology ; 303(3): 682-692, 2022 06.
Article in English | MEDLINE | ID: mdl-35103535

ABSTRACT

Background Since vaccines against COVID-19 became available, rare breakthrough infections have been reported despite their high efficacies. Purpose To evaluate the clinical and imaging characteristics of patients with COVID-19 breakthrough infections and compare them with those of unvaccinated patients with COVID-19. Materials and Methods In this retrospective multicenter cohort study, the authors analyzed patient (aged ≥18 years) data from three centers that were registered in an open data repository for COVID-19 between June and August 2021. Hospitalized patients with baseline chest radiographs were divided into three groups according to their vaccination status. Differences between clinical and imaging features were analyzed using the Pearson χ2 test, Fisher exact test, and analysis of variance. Univariable and multivariable logistic regression analyses were used to evaluate associations between clinical factors, including vaccination status and clinical outcomes. Results Of the 761 hospitalized patients with COVID-19, the mean age was 47 years and 385 (51%) were women; 47 patients (6%) were fully vaccinated (breakthrough infection), 127 (17%) were partially vaccinated, and 587 (77%) were unvaccinated. Of the 761 patients, 412 (54%) underwent chest CT during hospitalization. Among the patients who underwent CT, the proportions without pneumonia were 22% of unvaccinated patients (71 of 326), 30% of partially vaccinated patients (19 of 64), and 59% of fully vaccinated patients (13 of 22) (P < .001). Fully vaccinated status was associated with a lower risk of requiring supplemental oxygen (odds ratio [OR], 0.24 [95% CI: 0.09, 0.64; P = .005]) and lower risk of intensive care unit admission (OR, 0.08 [95% CI: 0.09, 0.78; P = .02]) compared with unvaccinated status. Conclusion Patients with COVID-19 breakthrough infections had a significantly higher proportion of CT scans without pneumonia compared with unvaccinated patients. Vaccinated patients with breakthrough infections had a lower likelihood of requiring supplemental oxygen and intensive care unit admission. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Schiebler and Bluemke in this issue.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adolescent , Adult , COVID-19/diagnostic imaging , Cohort Studies , Female , Humans , Male , Middle Aged , Oxygen , SARS-CoV-2 , Vaccination
4.
Taehan Yongsang Uihakhoe Chi ; 81(2): 365-378, 2020 Mar.
Article in English | MEDLINE | ID: mdl-36237376

ABSTRACT

Purpose: This study was performed to determine whether the T1 relaxation time of gadoxetic acid-enhanced liver MR imaging is useful for detecting and staging liver fibrosis in patients with chronic liver disease. Materials and Methods: One hundred and three patients with suspected focal liver lesion underwent MR imaging and Fibroscan. Fibroscan was chosen as the reference standard for classifying liver fibrosis. T1 relaxation times were acquired before (preT1), 20 minutes after (postT1) contrast administration, and reduction rate of T1 relaxation time (rrT1) on transverse 3D VIBE (volumetric interpolated breath-hold examination) sequence using 3T MR imaging. The optimal cut-off values for the fibrosis staging were determined with ROC analysis. Results: PreT1 and postT1 increased and rrT1 decreased constantly with increasing severity of liver fibrosis according to the METAVIR score (F0-F4). There were statistically significant differences between F2 and F3 in preT1 (F2, 836.0 ± 74.7 ms; F3, 888.6 ± 77.5 ms, p < 0.05) and between F3 and F4 in postT1 (F3, 309.0 ± 80.2 ms; F4, 406.6 ± 147.7 ms, p < 0.05) and rrT1 (F3, 65.4 ± 7.7%; F4, 57.3 ± 11.4%, p < 0.05). ROC analysis revealed that combination test (preT1 + postT1) was the best test for predicting liver fibrosis. Conclusion: PreT1 and postT1 increased constantly with increasing severity of liver fibrosis. T1 mapping in gadoxetic acid-enhanced liver MR imaging could be a helpful complementary sequence to determine the liver fibrosis stage.

SELECTION OF CITATIONS
SEARCH DETAIL
...