Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 508: 167-173, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-28829957

ABSTRACT

Paper-based materials have attracted a great deal of attention in sensor applications because they are readily available, biodegradable, inexpensive, and mechanically flexible. Although paper-based sensors have been developed, but important obstacles remian, which include the retention of chemical and mechanical stabilities when paper is wetted. Herein, we develop a simple and scalable process for fabrication of newspaper-based platforms by coating of parylene C and patterning of metal layers. As-prepared parylene C-coated newspaper (PC-paper) provides low-cost, disposable, and mechanically and chemically stable electrochemical platforms for the development of potentiometric ion sensors for the detection of electrolyte cations, such as, H+ and K+. The pH and K+ sensors produced show near ideal Nernstian sensitivity, good repeatability, good ion selectivity, and low potential drift. These disposable, flexible ion sensors based on PC-paper platforms could provide new opportunities for the development of point-of-care testing sensors, for diagnostics, healthcare, and environment testing.

2.
ACS Appl Mater Interfaces ; 8(51): 34978-34984, 2016 Dec 28.
Article in English | MEDLINE | ID: mdl-27976864

ABSTRACT

The flexible sensing platform is a key component for the development of smart portable devices targeting healthcare, environmental monitoring, point-of-care diagnostics, and personal electronics. Herein, we demonstrate a simple, scalable, and cost-effective strategy for fabrication of a sensing electrode based on a waste newspaper with conformal coating of parylene C (P-paper). Thin polymeric layers over cellulose fibers allow the P-paper to possess improved mechanical and chemical stability, which results in high-performance flexible sensing platforms for the detection of pathogenic E. coli O157:H7 based on DNA hybridization. Moreover, P-paper electrodes have the potential to serve as disposable, flexible sensing platforms for point-of-care testing biosensors.

SELECTION OF CITATIONS
SEARCH DETAIL
...