Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Eur Rev Med Pharmacol Sci ; 26(3): 828-845, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35179749

ABSTRACT

Sutures are used to facilitate wound healing and play an important role in ensuring the success of surgical interventions in healthcare facilities. Suture-associated surgical site infection (SSI) may develop when bacterial contaminants colonize the suture surface and establish biofilms that are highly resistant to antibiotic treatment. The outcome of SSI affects postoperative care, leading to high rates of morbidity and mortality, prolonged hospitalization, and increased financial burden. Antimicrobial sutures coated with antiseptics such as triclosan and chlorhexidine have been used to minimize the occurrence of SSI. However, as the efficacy of antiseptic-based sutures may be affected due to the emergence of resistant strains, new approaches for the development of alternative antimicrobial sutures are necessary. This review provides an update and outlook of various approaches in the design and development of antimicrobial sutures. Attaining a zero SSI rate will be possible with the advancement in suturing technology and implementation of good infection control practice in clinical settings.


Subject(s)
Anti-Infective Agents, Local , Anti-Infective Agents , Triclosan , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents, Local/therapeutic use , Humans , Surgical Wound Infection/drug therapy , Sutures , Triclosan/pharmacology , Triclosan/therapeutic use
2.
Scanning ; 38(6): 842-856, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27302216

ABSTRACT

According to the statistic from World Health Organization (WHO), stroke is one of the major causes of death globally. Computed tomography (CT) scan is one of the main medical diagnosis system used for diagnosis of ischemic stroke. CT scan provides brain images in Digital Imaging and Communication in Medicine (DICOM) format. The presentation of CT brain images is mainly relied on the window setting (window center and window width), which converts an image from DICOM format into normal grayscale format. Nevertheless, the ordinary window parameter could not deliver a proper contrast on CT brain images for ischemic stroke detection. In this paper, a new proposed method namely gamma correction extreme-level eliminating with weighting distribution (GCELEWD) is implemented to improve the contrast on CT brain images. GCELEWD is capable of highlighting the hypodense region for diagnosis of ischemic stroke. The performance of this new proposed technique, GCELEWD, is compared with four of the existing contrast enhancement technique such as brightness preserving bi-histogram equalization (BBHE), dualistic sub-image histogram equalization (DSIHE), extreme-level eliminating histogram equalization (ELEHE), and adaptive gamma correction with weighting distribution (AGCWD). GCELEWD shows better visualization for ischemic stroke detection and higher values with image quality assessment (IQA) module. SCANNING 38:842-856, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Brain Infarction/diagnostic imaging , Tomography, X-Ray Computed/methods , Brain/diagnostic imaging , Contrast Media , Humans , Radiographic Image Enhancement
3.
J Microsc ; 264(2): 159-174, 2016 11.
Article in English | MEDLINE | ID: mdl-27238911

ABSTRACT

A new method based on nonlinear least squares regression (NLLSR) is formulated to estimate signal-to-noise ratio (SNR) of scanning electron microscope (SEM) images. The estimation of SNR value based on NLLSR method is compared with the three existing methods of nearest neighbourhood, first-order interpolation and the combination of both nearest neighbourhood and first-order interpolation. Samples of SEM images with different textures, contrasts and edges were used to test the performance of NLLSR method in estimating the SNR values of the SEM images. It is shown that the NLLSR method is able to produce better estimation accuracy as compared to the other three existing methods. According to the SNR results obtained from the experiment, the NLLSR method is able to produce approximately less than 1% of SNR error difference as compared to the other three existing methods.

4.
J Microsc ; 263(1): 64-77, 2016 07.
Article in English | MEDLINE | ID: mdl-26871742

ABSTRACT

A new technique to quantify signal-to-noise ratio (SNR) value of the scanning electron microscope (SEM) images is proposed. This technique is known as autocorrelation Levinson-Durbin recursion (ACLDR) model. To test the performance of this technique, the SEM image is corrupted with noise. The autocorrelation function of the original image and the noisy image are formed. The signal spectrum based on the autocorrelation function of image is formed. ACLDR is then used as an SNR estimator to quantify the signal spectrum of noisy image. The SNR values of the original image and the quantified image are calculated. The ACLDR is then compared with the three existing techniques, which are nearest neighbourhood, first-order linear interpolation and nearest neighbourhood combined with first-order linear interpolation. It is shown that ACLDR model is able to achieve higher accuracy in SNR estimation.

5.
Scanning ; 38(6): 492-501, 2016 Nov.
Article in English | MEDLINE | ID: mdl-26618303

ABSTRACT

This paper introduces new development technique to improve the Scanning Electron Microscope (SEM) image quality and we name it as sub-blocking multiple peak histogram equalization (SUB-B-MPHE) with convolution operator. By using this new proposed technique, it shows that the new modified MPHE performs better than original MPHE. In addition, the sub-blocking method consists of convolution operator which can help to remove the blocking effect for SEM images after applying this new developed technique. Hence, by using the convolution operator, it effectively removes the blocking effect by properly distributing the suitable pixel value for the whole image. Overall, the SUB-B-MPHE with convolution outperforms the rest of methods. SCANNING 38:492-501, 2016. © 2015 Wiley Periodicals, Inc.

6.
Scanning ; 38(6): 502-514, 2016 Nov.
Article in English | MEDLINE | ID: mdl-26618491

ABSTRACT

An improvement to the existing technique of quantifying signal-to-noise ratio (SNR) of scanning electron microscope (SEM) images using piecewise cubic Hermite interpolation (PCHIP) technique is proposed. The new technique uses an adaptive tuning onto the PCHIP, and is thus named as ATPCHIP. To test its accuracy, 70 images are corrupted with noise and their autocorrelation functions are then plotted. The ATPCHIP technique is applied to estimate the uncorrupted noise-free zero offset point from a corrupted image. Three existing methods, the nearest neighborhood, first order interpolation and original PCHIP, are used to compare with the performance of the proposed ATPCHIP method, with respect to their calculated SNR values. Results show that ATPCHIP is an accurate and reliable method to estimate SNR values from SEM images. SCANNING 38:502-514, 2016. © 2015 Wiley Periodicals, Inc.

7.
Scanning ; 38(2): 148-63, 2016.
Article in English | MEDLINE | ID: mdl-26235517

ABSTRACT

Noise on scanning electron microscope (SEM) images is studied. Gaussian noise is the most common type of noise in SEM image. We developed a new noise reduction filter based on the Wiener filter. We compared the performance of this new filter namely adaptive noise Wiener (ANW) filter, with four common existing filters as well as average filter, median filter, Gaussian smoothing filter and the Wiener filter. Based on the experiments results the proposed new filter has better performance on different noise variance comparing to the other existing noise removal filters in the experiments.

8.
J Microsc ; 260(3): 352-62, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26292081

ABSTRACT

A new technique based on nearest neighbourhood method is proposed. In this paper, considering the noise as Gaussian additive white noise, new technique single-image-based estimator is proposed. The performance of this new technique such as adaptive slope nearest neighbourhood is compared with three of the existing method which are original nearest neighbourhood (simple method), first-order interpolation method and shape-preserving piecewise cubic hermite autoregressive moving average. In a few cases involving images with different brightness and edges, this adaptive slope nearest neighbourhood is found to deliver an optimum solution for signal-to-noise ratio estimation problems. For different values of noise variance, the adaptive slope nearest neighbourhood has highest accuracy and less percentage estimation error. Being more robust with white noise, the new proposed technique estimator has efficiency that is significantly greater than those of the three methods.

9.
Scanning ; 37(6): 381-8, 2015.
Article in English | MEDLINE | ID: mdl-25969945

ABSTRACT

This is the extended project by introducing the modified dynamic range histogram modification (MDRHM) and is presented in this paper. This technique is used to enhance the scanning electron microscope (SEM) imaging system. By comparing with the conventional histogram modification compensators, this technique utilizes histogram profiling by extending the dynamic range of each tile of an image to the limit of 0-255 range while retains its histogram shape. The proposed technique yields better image compensation compared to conventional methods.

10.
J Microsc ; 258(2): 140-50, 2015 May.
Article in English | MEDLINE | ID: mdl-25676007

ABSTRACT

A new technique based on cubic spline interpolation with Savitzky-Golay smoothing using weighted least squares error filter is enhanced for scanning electron microscope (SEM) images. A diversity of sample images is captured and the performance is found to be better when compared with the moving average and the standard median filters, with respect to eliminating noise. This technique can be implemented efficiently on real-time SEM images, with all mandatory data for processing obtained from a single image. Noise in images, and particularly in SEM images, are undesirable. A new noise reduction technique, based on cubic spline interpolation with Savitzky-Golay and weighted least squares error method, is developed. We apply the combined technique to single image signal-to-noise ratio estimation and noise reduction for SEM imaging system. This autocorrelation-based technique requires image details to be correlated over a few pixels, whereas the noise is assumed to be uncorrelated from pixel to pixel. The noise component is derived from the difference between the image autocorrelation at zero offset, and the estimation of the corresponding original autocorrelation. In the few test cases involving different images, the efficiency of the developed noise reduction filter is proved to be significantly better than those obtained from the other methods. Noise can be reduced efficiently with appropriate choice of scan rate from real-time SEM images, without generating corruption or increasing scanning time.

11.
Scanning ; 36(5): 530-9, 2014.
Article in English | MEDLINE | ID: mdl-25139061

ABSTRACT

An improvement to the previously proposed adaptive Canny optimization technique for scanning electron microscope image colorization is reported. The additional feature, called pseudo-mapping technique, is that the grayscale markings are temporarily mapped to a set of pre-defined pseudo-color map as a mean to instill color information for grayscale colors in chrominance channels. This allows the presence of grayscale markings to be identified; hence optimization colorization of grayscale colors is made possible. This additional feature enhances the flexibility of scanning electron microscope image colorization by providing wider range of possible color enhancement. Furthermore, the nature of this technique also allows users to adjust the luminance intensities of selected region from the original image within certain extent.

12.
Comput Biol Med ; 49: 46-59, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24736203

ABSTRACT

A computer-aided detection auto-probing (CADAP) system is presented for detecting breast lesions using dynamic contrast enhanced magnetic resonance imaging, through a spatial-based discrete Fourier transform. The stand-alone CADAP system reduces noise, refines region of interest (ROI) automatically, and detects the breast lesion with minimal false positive detection. The lesions are then classified and colourised according to their characteristics, whether benign, suspicious or malignant. To enhance the visualisation, the entire analysed ROI is constructed into a 3-D image, so that the user can diagnose based on multiple views on the ROI. The proposed method has been applied to 101 sets of digital images, and the results compared with the biopsy results done by radiologists. The proposed scheme is able to identify breast cancer regions accurately and efficiently.


Subject(s)
Breast Neoplasms/diagnosis , Fourier Analysis , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Adult , Aged , Breast/pathology , Breast Neoplasms/pathology , Female , Humans , Imaging, Three-Dimensional/methods , Middle Aged
13.
J Microsc ; 253(1): 1-11, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24164248

ABSTRACT

A new technique based on cubic spline interpolation with Savitzky-Golay noise reduction filtering is designed to estimate signal-to-noise ratio of scanning electron microscopy (SEM) images. This approach is found to present better result when compared with two existing techniques: nearest neighbourhood and first-order interpolation. When applied to evaluate the quality of SEM images, noise can be eliminated efficiently with optimal choice of scan rate from real-time SEM images, without generating corruption or increasing scanning time.


Subject(s)
Image Processing, Computer-Assisted/methods , Microscopy, Electron, Scanning/methods , Signal-To-Noise Ratio , Animals , Culicidae/ultrastructure , Extremities/anatomy & histology
14.
Scanning ; 35(3): 205-12, 2013.
Article in English | MEDLINE | ID: mdl-22961698

ABSTRACT

A number of techniques have been proposed during the last three decades for noise variance and signal-to-noise ratio (SNR) estimation in digital images. While some methods have shown reliability and accuracy in SNR and noise variance estimations, other methods are dependent on the nature of the images and perform well on a limited number of image types. In this article, we prove the accuracy and the efficiency of the image noise cross-correlation estimation model, vs. other existing estimators, when applied to different types of scanning electron microscope images.

15.
Scanning ; 35(2): 75-87, 2013.
Article in English | MEDLINE | ID: mdl-22777599

ABSTRACT

Detection of cracks from stainless steel pipe images is done using contrast stretching technique. The technique is based on an image filter technique through mathematical morphology that can expose the cracks. The cracks are highlighted and noise removal is done efficiently while still retaining the edges. An automated crack detection system with a camera platform has been successfully implemented. We compare crack extraction in terms of quality measures with those of Otsu's threshold technique and the another technique (Iyer and Sinha, 2005). The algorithm shown is able to achieve good results and perform better than these other techniques.

16.
J Microsc ; 248(2): 120-8, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22900970

ABSTRACT

A new technique for estimation of signal-to-noise ratio in scanning electron microscope images is reported. The method is based on the image noise cross-correlation estimation model recently developed. We derive the basic performance limits on a single image signal-to-noise ratio estimation using the Cramer-Rao inequality. The results are compared with those from existing estimation methods including the nearest neighbourhood (the simple method), the first order linear interpolator, and the autoregressive based estimator. The comparisons were made using several tests involving different images within the performance bounds. From the results obtained, the efficiency and accuracy of image noise cross-correlation estimation technique is considerably better than the other three methods.

17.
Scanning ; 33(4): 233-51, 2011.
Article in English | MEDLINE | ID: mdl-21611953

ABSTRACT

To reduce undesirable charging effects in scanning electron microscope images, Rayleigh contrast stretching is developed and employed. First, re-scaling is performed on the input image histograms with Rayleigh algorithm. Then, contrast stretching or contrast adjustment is implemented to improve the images while reducing the contrast charging artifacts. This technique has been compared to some existing histogram equalization (HE) extension techniques: recursive sub-image HE, contrast stretching dynamic HE, multipeak HE and recursive mean separate HE. Other post processing methods, such as wavelet approach, spatial filtering, and exponential contrast stretching, are compared as well. Overall, the proposed method produces better image compensation in reducing charging artifacts.


Subject(s)
Cellulose/chemistry , Image Enhancement/methods , Microscopy, Electron, Scanning/methods , Algorithms , Electrons , Epoxy Compounds/chemistry , Signal-To-Noise Ratio , Static Electricity , Wavelet Analysis
18.
Scanning ; 33(1): 13-20, 2011.
Article in English | MEDLINE | ID: mdl-21462221

ABSTRACT

This article focuses on the localization of burn mark in MOSFET and the scanning electron microscope (SEM) inspection on the defect location. When a suspect abnormal topography is shown on the die surface, further methods to pin-point the defect location is necessary. Fault localization analysis becomes important because an abnormal spot on the chip surface may and may not have a defect underneath it. The chip surface topography can change due to the catastrophic damage occurred at layers under the chip surface, but it could also be due to inconsistency during metal deposition in the wafer fabrication process. Two localization techniques, liquid crystal thermography and emission microscopy, were performed to confirm that the abnormal topography spot is the actual defect location. The tiny burn mark was surfaced by performing a surface decoration at the defect location using hot hydrochloric acid. SEM imaging, which has the high magnification and three-dimensional capabilities, was used to capture the images of the burn mark.

19.
Scanning ; 33(2): 82-93, 2011.
Article in English | MEDLINE | ID: mdl-21381045

ABSTRACT

A new and robust parameter estimation technique, named image noise cross-correlation, is proposed to predict the signal-to-noise ratio (SNR) of scanning electron microscope images. The results of SNR and variance estimation values are tested and compared with nearest neighborhood and first-order interpolation. Overall, the proposed method is best as its estimations for the noise-free peak and SNR are most consistent and accurate to within a certain acceptable degree, compared with the others.

20.
J Med Syst ; 35(1): 39-48, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20703587

ABSTRACT

A novel technique to quantify the signal-to-noise ratio (SNR) of magnetic resonance images is developed. The image SNR is quantified by estimating the amplitude of the signal spectrum using the autocorrelation function of just one single magnetic resonance image. To test the performance of the quantification, SNR measurement data are fitted to theoretically expected curves. It is shown that the technique can be implemented in a highly efficient way for the magnetic resonance imaging system.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Models, Statistical , Humans , Image Processing, Computer-Assisted/statistics & numerical data , Magnetic Resonance Imaging/statistics & numerical data , Phantoms, Imaging , Signal Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...