Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Zool A Ecol Genet Physiol ; 307(6): 357-69, 2007 Jun 01.
Article in English | MEDLINE | ID: mdl-17405165

ABSTRACT

The main objective of this study was to determine whether active NH(4) (+) excretion occurred in the giant mudskipper, Periophthalmodon schlosseri, during emersion. Our results demonstrated that continual ammonia excretion in P. schlosseri during 24 hr of emersion resulted in high concentrations ( approximately 30 mmol l(-1)) of ammonia in fluid collected from the branchial surface. For fish injected intraperitoneally with 8 mumol g(-1) ammonium acetate (CH3COONH4) followed by 24 hr of emersion, the cumulative ammonia excreted was significantly greater than that of the control injected with sodium acetate. More importantly, the ammonia excretion rate at hour 2 in fish injected with CH3COONH4 followed by emersion was greater than that in fish immersed in water as reported elsewhere, with the greatest change in the ammonia excretion rate occurring at hour 2. Assuming that the rate of endogenous ammonia production remained unchanged, 33% of the exogenous ammonia was excreted through the head region, presumably through the gills, during the first 6 hr of emersion. Indeed, at hour 6, the ammonia concentration in the branchial fluid increased to an extraordinarily high concentration of >90 mmol l(-1). Therefore, our results confirm for the first time that P. schlosseri can effectively excrete a high load of ammonia on land, and corroborate the proposition that active NH(4) (+) excretion through its gills contributes in part to its high tolerance of aerial exposure. Only 4.6% of the exogenous ammonia was detoxified to urea. The glutamate contents in the muscle and liver also increased significantly, but the glutamine contents remained unchanged.


Subject(s)
Ammonia/metabolism , Perciformes/metabolism , Acetates/pharmacology , Ammonia/analysis , Animals , Branchial Region/chemistry , Hydrogen-Ion Concentration , Metabolic Networks and Pathways , Urea/analysis , Urea/metabolism
2.
J Exp Biol ; 208(Pt 10): 1993-2004, 2005 May.
Article in English | MEDLINE | ID: mdl-15879078

ABSTRACT

The objective of this study was to elucidate if chronic and acute ammonia intoxication in mudskippers, Periophthalmodon schlosseri and Boleophthalmus boddaerti, were associated with high levels of ammonia and/or glutamine in their brains, and if acute ammonia intoxication could be prevented by the administration of methionine sulfoximine [MSO; an inhibitor of glutamine synthetase (GS)] or MK801 [an antagonist of N-methyl D-aspartate type glutamate (NMDA) receptors]. For P. schlosseri and B. boddaerti exposed to sublethal concentrations (100 and 8 mmol l(-1) NH4Cl, respectively, at pH 7.0) of environmental ammonia for 4 days, brain ammonia contents increased drastically during the first 24 h, and they reached 18 and 14.5 micromol g(-1), respectively, at hour 96. Simultaneously, there were increases in brain glutamine contents, but brain glutamate contents were unchanged. Because glutamine accumulated to exceptionally high levels in brains of P. schlosseri (29.8 micromol g(-1)) and B. boddaerti (12.1 micromol g(-1)) without causing death, it can be concluded that these two mudskippers could ameliorate those problems associated with glutamine synthesis and accumulation as observed in patients suffering from hyperammonemia. P. schlosseri and B. boddaerti could tolerate high doses of ammonium acetate (CH3COONH4) injected into their peritoneal cavities, with 24 h LC50 of 15.6 and 12.3 micromol g(-1) fish, respectively. After the injection with a sublethal dose of CH3COONH4 (8 micromol g(-1) fish), there were significant increases in ammonia (5.11 and 8.36 micromol g(-1), respectively) and glutamine (4.22 and 3.54 micromol g(-1), respectively) levels in their brains at hour 0.5, but these levels returned to normal at hour 24. By contrast, for P. schlosseri and B. boddaerti that succumbed within 15-50 min to a dose of CH3COONH4 (15 and 12 micromol g(-1) fish, respectively) close to the LC50 values, the ammonia contents in the brains reached much higher levels (12.8 and 14.9 micromol g(-1), respectively), while the glutamine level remained relatively low (3.93 and 2.67 micromol g(-1), respectively). Thus, glutamine synthesis and accumulation in the brain was not the major cause of death in these two mudskippers confronted with acute ammonia toxicity. Indeed, MSO, at a dosage (100 microg g(-1) fish) protective for rats, did not protect B. boddaerti against acute ammonia toxicity, although it was an inhibitor of GS activities from the brains of both mudskippers. In the case of P. schlosseri, MSO only prolonged the time to death but did not reduce the mortality rate (100%). In addition, MK801 (2 microg g(-1) fish) had no protective effect on P. schlosseri and B. boddaerti injected with a lethal dose of CH3COONH4, indicating that activation of NMDA receptors was not the major cause of death during acute ammonia intoxication. Thus, it can be concluded that there are major differences in mechanisms of chronic and acute ammonia toxicity between brains of these two mudskippers and mammalian brains.


Subject(s)
Ammonia/metabolism , Brain/metabolism , Glutamine/metabolism , Perciformes/metabolism , Acetates/toxicity , Animals , Brain/drug effects , Dizocilpine Maleate/pharmacology , Glutamate-Ammonia Ligase/antagonists & inhibitors , Lethal Dose 50 , Malaysia , Methionine Sulfoximine/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...