Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Microbiol Biotechnol ; 34(4): 978-984, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38379308

ABSTRACT

Genome-scale metabolic model (GEM) can be used to simulate cellular metabolic phenotypes under various environmental or genetic conditions. This study utilized the GEM to observe the internal metabolic fluxes of recombinant Escherichia coli producing gamma-aminobutyric acid (GABA). Recombinant E. coli was cultivated in a fermenter under three conditions: pH 7, pH 5, and additional succinic acids. External fluxes were calculated from cultivation results, and internal fluxes were calculated through flux optimization. Based on the internal flux analysis, glycolysis and pentose phosphate pathways were repressed under cultivation at pH 5, even though glutamate dehydrogenase increased GABA production. Notably, this repression was halted by adding succinic acid. Furthermore, proper sucA repression is a promising target for developing strains more capable of producing GABA.


Subject(s)
Escherichia coli , gamma-Aminobutyric Acid , Escherichia coli/genetics , Escherichia coli/metabolism , gamma-Aminobutyric Acid/metabolism , gamma-Aminobutyric Acid/biosynthesis , Hydrogen-Ion Concentration , Fermentation , Glycolysis , Succinic Acid/metabolism , Pentose Phosphate Pathway , Metabolic Flux Analysis , Models, Biological , Bioreactors/microbiology , Glutamate Dehydrogenase/metabolism , Glutamate Dehydrogenase/genetics , Metabolic Engineering/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...