Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 10(6)2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34204404

ABSTRACT

Arthritis is a common condition that causes pain and inflammation in a joint. Previously, we reported that the mixture extract (ME) from Agrimonia pilosa Ledeb. (AP) and Salvia miltiorrhiza Bunge (SM) could ameliorate gout arthritis. In the present study, we aimed to investigate the potential anti-inflammatory and antinociceptive effects of ME and characterize the mechanism. We compared the anti-inflammatory and antinociceptive effects of a positive control, Perna canaliculus powder (PC). The results showed that one-off and one-week treatment of ME reduced the pain threshold in a dose-dependent manner (from 10 to 100 mg/kg) in the mono-iodoacetate (MIA)-induced osteoarthritis (OA) model. ME also reduced the plasma TNF-α, IL-6, and CRP levels. In LPS-stimulated RAW 264.7 cells, ME inhibited the release of NO, PGE2, LTB4, and IL-6, increased the phosphorylation of PPAR-γ protein, and downregulated TNF-α and MAPKs proteins expression in a concentration-dependent (from 1 to 100 µg/mL) manner. Furthermore, ME ameliorated the progression of ear edema in mice. In most of the experiments, ME-induced effects were almost equal to, or were higher than, PC-induced effects. Conclusions: The data presented here suggest that ME shows anti-inflammatory and antinociceptive activities, indicating ME may be a potential therapeutic for arthritis treatment.

2.
Korean J Physiol Pharmacol ; 25(3): 207-216, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33859061

ABSTRACT

Several studies have previously reported that exposure to stress provokes behavioral changes, including antinociception, in rodents. In the present study, we studied the effect of acute cold-water (4°C) swimming stress (CWSS) on nociception and the possible changes in several signal molecules in male ICR mice. Here, we show that 3 min of CWSS was sufficient to produce antinociception in tailflick, hot-plate, von-Frey, writhing, and formalin-induced pain models. Significantly, CWSS strongly reduced nociceptive behavior in the first phase, but not in the second phase, of the formalin-induced pain model. We further examined some signal molecules' expressions in the dorsal root ganglia (DRG) and spinal cord to delineate the possible molecular mechanism involved in the antinociceptive effect under CWSS. CWSS reduced p-ERK, p-AMPKα1, p-AMPKα2, p-Tyk2, and p-STAT3 expression both in the spinal cord and DRG. However, the phosphorylation of mTOR was activated after CWSS in the spinal cord and DRG. Moreover, p-JNK and p-CREB activation were significantly increased by CWSS in the spinal cord, whereas CWSS alleviated JNK and CREB phosphorylation levels in DRG. Our results suggest that the antinociception induced by CWSS may be mediated by several molecules, such as ERK, JNK, CREB, AMPKα1, AMPKα2, mTOR, Tyk2, and STAT3 located in the spinal cord and DRG.

3.
Anim Cells Syst (Seoul) ; 25(1): 37-45, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33717415

ABSTRACT

In the present study, we examined the effect of cold-water swimming stress (CWSS) on plasma corticosterone levels. Mice were exposed to stress in 4°C for 3 mins. Plasma corticosterone (CORT) level was measured at 0, 15, and 30 min after stress stimulation. The plasma CORT level was gradually increased up to 30 min. Then we further examined the changes of several signaling molecules expression levels, such as p-ERK, p-JNK, p-P38, p-AMPKα1, p-AMPKα2, and p-mTOR, in the HPA axis. We observed that those signaling molecules were altered after stress in the HPA axis. p-ERK, p-JNK, p-P38, and p-mTOR proteins expression were reduced by CWSS in the HPA axis. However, the phosphorylation of AMPKα1 and AMPKα2 were activated after CWSS in the HPA axis. Our results suggest that the upregulation of plasma CORT level induced by CWSS may be modulated by the those signaling molecules.

4.
Acta Neurobiol Exp (Wars) ; 80(4): 358-363, 2020.
Article in English | MEDLINE | ID: mdl-33350988

ABSTRACT

ß-amyloid is an important factor in the pathophysiology of Alzheimer's disease. This study investigates ß-amyloid's role in the regulation of nociception in mice. Pretreated once, 2 weeks prior to testing with ß-amyloid, male ICR mice were examined on various nociceptive tests. Pretreatment with ß-amyloid reversed the nociceptive effects induced by intraperitoneally administered acetic acid (writhing response) and intraplantar injection of 5% formalin into the hind paw. ß-amyloid pretreatment also elevated the threshold for nociception in the mechanical von Frey test. Additionally, p-CREB and p-ERK levels in the spinal cord and the adrenal gland increased after formalin injection. Pretreatment with ß-amyloid attenuated formalin­induced overexpression of p-CREB and p-ERK in the spinal cord and the adrenal gland. Our results suggest that chemical and mechanical nociception appear to be altered in ß-amyloid-treated animals. Furthermore, the reduction of nociception by ß-amyloid in the formalin pain model appears to be mediated, at least in part, by the suppression of p-CREB and p-ERK level in the spinal cord and the adrenal gland.


Subject(s)
Amyloid beta-Peptides/pharmacology , Behavior, Animal/drug effects , Nociception/drug effects , Spinal Cord/drug effects , Animals , Disease Models, Animal , Formaldehyde/pharmacology , Injections, Spinal/methods , Male , Mice , Mice, Inbred ICR , Pain/chemically induced , Pain/drug therapy , Pain Measurement/drug effects
5.
Anim Cells Syst (Seoul) ; 23(4): 246-252, 2019.
Article in English | MEDLINE | ID: mdl-31489245

ABSTRACT

In the present study, we have examined the possible neuroprotective effects of resveratrol and oxyresveratrol against kainic-acid (KA)-induced hippocampal neuronal cell death. Either resveratrol or oxyresvertrol was orally administered 30 min prior to intracerebroventricular (i.c.v.) administration with KA (0.05 µg). Oral pretreatment with oxyresveratrol (50 mg/kg) significantly protected KA-induced hippocampal CA3 neuronal cell death. However, the same dose (50 mg/kg) or a higher dose (100 mg/kg) pretreatment with resveratrol did not affect KA-induced hippocampal neuronal cell death. Furthermore, the i.c.v. pretreatment with 30 µg of oxyresveratrol or resveratrol did not show the protective effect against KA-induced hippocampal neuronal cell death. In the immunohistochemical analysis, FoxO3a and pFoxO3a expressions in the hippocampal CA3 region were significantly increased 30 min after KA administration. Oral pretreatment with oxyresveratrol (50 mg/kg) significantly reduced KA-induced Forkhead homeobox type O3a (FoxO3a) and pFoxO3a expression in CA3 region of the hippocampus, suggesting that oxyresveratrol may exert a neuroprotective effect against KA-induced hippocampal neuronal cell death by reducing the levels of FoxO3a and pFoxO3a protein expression in the hippocampal CA3 region. Furthermore, it is suggested that the neuroprotective effect of orally administered oxyresveratrol against KA-induced neurotoxicity might be possibly mediated by some metabolites rather than direct action of oxyresveratrol on the central nervous system.

SELECTION OF CITATIONS
SEARCH DETAIL
...