Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Dis ; 4: e915, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-24201814

ABSTRACT

The phenotypic transformation of well-differentiated epithelial carcinoma into a mesenchymal-like state provides cancer cells with the ability to disseminate locally and to metastasise. Different degrees of epithelial-mesenchymal transition (EMT) have been found to occur in carcinomas from breast, colon and ovarian carcinoma (OC), among others. Numerous studies have focused on bona fide epithelial and mesenchymal states but rarely on intermediate states. In this study, we describe a model system for appraising the spectrum of EMT using 43 well-characterised OC cell lines. Phenotypic EMT characterisation reveals four subgroups: Epithelial, Intermediate E, Intermediate M and Mesenchymal, which represent different epithelial-mesenchymal compositions along the EMT spectrum. In cell-based EMT-related functional studies, OC cells harbouring an Intermediate M phenotype are characterised by high N-cadherin and ZEB1 expression and low E-cadherin and ERBB3/HER3 expression and are more anoikis-resistant and spheroidogenic. A specific Src-kinase inhibitor, Saracatinib (AZD0530), restores E-cadherin expression in Intermediate M cells in in vitro and in vivo models and abrogates spheroidogenesis. We show how a 33-gene EMT Signature can sub-classify an OC cohort into four EMT States correlating with progression-free survival (PFS). We conclude that the characterisation of intermediate EMT states provides a new approach to better define EMT. The concept of the EMT Spectrum allows the utilisation of EMT genes as predictive markers and the design and application of therapeutic targets for reversing EMT in a selective subgroup of patients.


Subject(s)
Anoikis/drug effects , Cadherins/metabolism , Epithelial-Mesenchymal Transition/drug effects , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Animals , Antineoplastic Agents/therapeutic use , Benzodioxoles/therapeutic use , Cadherins/genetics , Cell Line, Tumor , Enzyme-Linked Immunosorbent Assay , Female , Fluorescent Antibody Technique , Humans , Mice , Quinazolines/therapeutic use , Xenograft Model Antitumor Assays
2.
J Biol Chem ; 253(10): 3415-21, 1978 May 25.
Article in English | MEDLINE | ID: mdl-348691

ABSTRACT

Adenosine 2',3'-riboepoxide 5'-triphosphate (epoxyATP) has been found to be a suicidal inactivator of DNA polymerase I from Escherichia coli by the following criteria. Inactivation is complete, is first order in enzyme activity, and shows saturation kinetics with an apparent KD of 30 +/- 10 micron for epoxy ATP. This KD is comparable to the KM of the substrate dATP. The t1/2 for inactivation is 1.3 min. Inactivation requires Mg2+ and the complementary template. The enzyme is protected by dATP but not by an excess of template. Gel filtration of the reaction mixture after inactivation with [3H]epoxy ATP results in the comigration of E. coli DNA polymerase I, the tritium-labeled inactivator, and the DNA template. The stoichiometry of binding approaches 1 mol of [3H]epoxy nucleotide per mol of inactivated enzyme. These results are consistent with the hypothesis that epoxy ATP initially serves as a substrate for the polymerase reaction, elongating the DNA chain by a nucleotidyl unit, and subsequently alkylates an essential base at the primer terminus binding site of the enzyme. Epoxy ATP also inactivates human and viral DNA polymerases but not E. coli RNA polymerase or rabbit muscle pyruvate kinase. Hence epoxy ATP may be a specific suicide reagent for DNA polymerases.


Subject(s)
Adenosine Triphosphate/analogs & derivatives , DNA Polymerase I/antagonists & inhibitors , Nucleic Acid Synthesis Inhibitors , Adenosine Triphosphate/pharmacology , Escherichia coli/enzymology , Kinetics , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...