Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Development ; 147(24)2020 12 23.
Article in English | MEDLINE | ID: mdl-33168583

ABSTRACT

The endocannabinoid (eCB) system, via the cannabinoid CB1 receptor, regulates neurodevelopment by controlling neural progenitor proliferation and neurogenesis. CB1 receptor signalling in vivo drives corticofugal deep layer projection neuron development through the regulation of BCL11B and SATB2 transcription factors. Here, we investigated the role of eCB signalling in mouse pluripotent embryonic stem cell-derived neuronal differentiation. Characterization of the eCB system revealed increased expression of eCB-metabolizing enzymes, eCB ligands and CB1 receptors during neuronal differentiation. CB1 receptor knockdown inhibited neuronal differentiation of deep layer neurons and increased upper layer neuron generation, and this phenotype was rescued by CB1 re-expression. Pharmacological regulation with CB1 receptor agonists or elevation of eCB tone with a monoacylglycerol lipase inhibitor promoted neuronal differentiation of deep layer neurons at the expense of upper layer neurons. Patch-clamp analyses revealed that enhancing cannabinoid signalling facilitated neuronal differentiation and functionality. Noteworthy, incubation with CB1 receptor agonists during human iPSC-derived cerebral organoid formation also promoted the expansion of BCL11B+ neurons. These findings unveil a cell-autonomous role of eCB signalling that, via the CB1 receptor, promotes mouse and human deep layer cortical neuron development.


Subject(s)
Cell Differentiation/genetics , Matrix Attachment Region Binding Proteins/genetics , Neurons/metabolism , Receptor, Cannabinoid, CB1/genetics , Repressor Proteins/genetics , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics , Animals , Cell Proliferation/drug effects , Cerebellum/growth & development , Embryonic Development/genetics , Endocannabinoids/agonists , Endocannabinoids/genetics , Endocannabinoids/metabolism , Gene Expression Regulation, Developmental/genetics , Humans , Induced Pluripotent Stem Cells/drug effects , Mice , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurogenesis/drug effects , Organoids/growth & development , Signal Transduction/genetics
2.
Neuropsychopharmacology ; 45(5): 877-886, 2020 04.
Article in English | MEDLINE | ID: mdl-31982904

ABSTRACT

Prenatal exposure to Δ9-tetrahydrocannabinol (THC), the most prominent active constituent of cannabis, alters neurodevelopmental plasticity with a long-term functional impact on adult offspring. Specifically, THC affects the development of pyramidal neurons and GABAergic interneurons via cannabinoid CB1 receptors (CB1R). However, the particular contribution of these two neuronal lineages to the behavioral alterations and functional deficits induced by THC is still unclear. Here, by using conditional CB1R knockout mice, we investigated the neurodevelopmental consequences of prenatal THC exposure in adulthood, as well as their potential sex differences. Adult mice that had been exposed to THC during embryonic development showed altered hippocampal oscillations, brain hyperexcitability, and spatial memory impairment. Remarkably, we found a clear sexual dimorphism in these effects, with males being selectively affected. At the neuronal level, we found a striking interneuronopathy of CCK-containing interneurons in the hippocampus, which was restricted to male progeny. This THC-induced CCK-interneuron reduction was not evident in mice lacking CB1R selectively in GABAergic interneurons, thus pointing to a cell-autonomous THC action. In vivo electrophysiological recordings of hippocampal LFPs revealed alterations in hippocampal oscillations confined to the stratum pyramidale of CA1 in male offspring. In addition, sharp-wave ripples, a major high-frequency oscillation crucial for learning and memory consolidation, were also altered, pointing to aberrant circuitries caused by persistent reduction of CCK+ basket cells. Taken together, these findings provide a mechanistic explanation for the long-term interneuronopathy responsible for the sex-dimorphic cognitive impairment induced by prenatal THC.


Subject(s)
Cannabinoid Receptor Agonists/administration & dosage , Dronabinol/administration & dosage , Hippocampus/drug effects , Hippocampus/pathology , Interneurons/drug effects , Prenatal Exposure Delayed Effects/chemically induced , Sex Characteristics , Spatial Memory/drug effects , Animals , Female , Hippocampus/physiology , Interneurons/pathology , Male , Mice, Knockout , Pregnancy , Prenatal Exposure Delayed Effects/pathology , Prenatal Exposure Delayed Effects/physiopathology , Prenatal Exposure Delayed Effects/psychology , RNA, Messenger/metabolism , Receptor, Cannabinoid, CB1/genetics , Spatial Memory/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...