Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Nat Prod Res ; : 1-12, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684022

ABSTRACT

Milk thistle (Silybum marianum) is well-known for its antioxidant activity due to the presence of silymarin. Albeit some studies show a potential for skin inflammation, its activity against dermal MMP-9 and MMP-2 remains to be studied. Silymarin isolated from an S. marianum herbal extract was tested for gelatinase inhibition in the presence of isolated MMP-9 and in dermal adenocarcinome HaCaT cells. Silymarin was then further tested in vivo, using a cutaneous inflammation mice model mediated by reactive oxygen species. Silymarin was able to significantly inhibit gelatinolytic activity in vitro without impairing cell growth and viability. Furthermore, inhibition was more pronounced in cells than with the isolated gelatinase, suggesting an additional effect upon metabolic pathways. In vivo, silymarin was able to reduce ear edema up to 74% and attenuated histological lesions. Results highlight silymarin potential for application in skin inflammatory disorders via gelatinase inhibition.

2.
Insects ; 15(1)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38276825

ABSTRACT

Honey bee colonies have great societal and economic importance. The main challenge that beekeepers face is keeping bee colonies healthy under ever-changing environmental conditions. In the past two decades, beekeepers that manage colonies of Western honey bees (Apis mellifera) have become increasingly concerned by the presence of parasites and pathogens affecting the bees, the reduction in pollen and nectar availability, and the colonies' exposure to pesticides, among others. Hence, beekeepers need to know the health condition of their colonies and how to keep them alive and thriving, which creates a need for a new holistic data collection method to harmonize the flow of information from various sources that can be linked at the colony level for different health determinants, such as bee colony, environmental, socioeconomic, and genetic statuses. For this purpose, we have developed and implemented the B-GOOD (Giving Beekeeping Guidance by computational-assisted Decision Making) project as a case study to categorize the colony's health condition and find a Health Status Index (HSI). Using a 3-tier setup guided by work plans and standardized protocols, we have collected data from inside the colonies (amount of brood, disease load, honey harvest, etc.) and from their environment (floral resource availability). Most of the project's data was automatically collected by the BEEP Base Sensor System. This continuous stream of data served as the basis to determine and validate an algorithm to calculate the HSI using machine learning. In this article, we share our insights on this holistic methodology and also highlight the importance of using a standardized data language to increase the compatibility between different current and future studies. We argue that the combined management of big data will be an essential building block in the development of targeted guidance for beekeepers and for the future of sustainable beekeeping.

3.
Pharmaceuticals (Basel) ; 16(12)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38139781

ABSTRACT

Dermal and transdermal drug delivery represents an important strategy to target drugs towards the site of action or to noninvasively enhance treatment activity, circumventing the hepatic first passage and reducing toxicity [...].

4.
Cells ; 12(16)2023 08 16.
Article in English | MEDLINE | ID: mdl-37626886

ABSTRACT

Breast cancer (BC) brain metastases (BCBM) is a severe condition frequently occurring in the triple-negative subtype. The study of BCBM pathogenesis and treatment has been hampered by the difficulty in establishing a reliable animal model that faithfully recapitulates the preferential formation of brain metastases. The injection of BC cells in the carotid artery of mice has been proposed but the procedure is challenging, with the metastatic pattern being scarcely characterized. In this work, we thoroughly describe an improved procedure, highlighting the tricks and challenges of the process, and providing a characterization of the brain and peripheral metastatic pattern at the cellular and molecular level. Triple-negative BC (4T1) cells were inoculated in the common carotid artery of BALB/c mice. Brains and peripheral organs were harvested at 7-14 days for the histological characterization of the metastases' pattern and the immunofluorescence analysis of specific markers. With our surgical procedure, both mouse death and procedure-associated weight loss were negligible. Brain metastases mostly occurred in the hippocampus, while sparse peripheral lesions were only detected in the lungs. Brain-colonizing BC cells presented proliferative (Ki-67) and epithelial (pan-cytokeratin and tomato lectin) features, which account for metastases' establishment. The presented surgical approach constitutes an important and reliable tool for BCBM studies.


Subject(s)
Brain Neoplasms , Triple Negative Breast Neoplasms , Animals , Mice , Humans , Carotid Artery, Common , Disease Models, Animal , Mice, Inbred BALB C
5.
ChemMedChem ; 18(17): e202300264, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37392377

ABSTRACT

A multistep and diversity-oriented synthetic route aiming at the A3 coupling/domino cyclization of o-ethynyl anilines, aldehydes and s-amines is described. The preparation of the corresponding precursors included a series of transformations, such as haloperoxidation and Sonogashira cross-coupling reactions, amine protection, desilylation and amine reduction. Some products of the multicomponent reaction underwent further detosylation and Suzuki coupling. The resulting library of structurally diverse compounds was evaluated against blood and liver stage malaria parasites, which revealed a promising lead with sub-micromolar activity against intra-erythrocytic forms of Plasmodium falciparum. The results from this hit-to-lead optimization are hereby reported for the first time.


Subject(s)
Antimalarials , Antimalarials/pharmacology , Indoles , Aldehydes , Amines , Aniline Compounds , Cyclization , Catalysis
6.
Burns Trauma ; 11: tkad014, 2023.
Article in English | MEDLINE | ID: mdl-37520659

ABSTRACT

Skin is widely used as a drug delivery route due to its easy access and the possibility of using relatively painless methods for the administration of bioactive molecules. However, the barrier properties of the skin, along with its multilayer structure, impose severe restrictions on drug transport and bioavailability. Thus, bioengineered models aimed at emulating the skin have been developed not only for optimizing the transdermal transport of different drugs and testing the safety and toxicity of substances but also for understanding the biological processes behind skin wounds. Even though in vivo research is often preferred to study biological processes involving the skin, in vitro and ex vivo strategies have been gaining increasing relevance in recent years. Indeed, there is a noticeably increasing adoption of in vitro and ex vivo methods by internationally accepted guidelines. Furthermore, microfluidic organ-on-a-chip devices are nowadays emerging as valuable tools for functional and behavioural skin emulation. Challenges in miniaturization, automation and reliability still need to be addressed in order to create skin models that can predict skin behaviour in a robust, high-throughput manner, while being compliant with regulatory issues, standards and guidelines. In this review, skin models for transdermal transport, wound repair and cutaneous toxicity will be discussed with a focus on high-throughput strategies. Novel microfluidic strategies driven by advancements in microfabrication technologies will also be revised as a way to improve the efficiency of existing models, both in terms of complexity and throughput.

7.
Cureus ; 15(2): e35588, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37007418

ABSTRACT

A gallstone ileus is a rare cause of mechanical bowel obstruction, accounting for 1% to 4% of all cases. Twenty-five percent of the patients are 65 years of age or older and often present previous significant medical conditions. The authors report the case of an 87-year-old male patient, admitted with the diagnosis of community-acquired pneumonia, who later developed frequent episodes of biliary vomiting, intermittent constipation, and abdominal distension. Abdominal imaging (ultrasound and computed tomography (CT)) showed evidence of a localized inflammatory process in a small bowel loop but excluded vesicular lithiasis. After a failure in the medical approach with antibiotics, an exploratory laparotomy was performed, identifying the intestinal occlusion area, followed by an enterolithotomy at the specific area, and extraction of a 4 cm stone of acellular material. Posteriorly, the patient was treated for three weeks with a carbapenem and physical rehabilitation was promptly initiated with full recovery of his previous status. Gallstone ileus is a very challenging diagnosis and surgery is the treatment of choice. In elderly patients, it is important to promote prompt physical rehabilitation to prevent prolonged bed rest.

8.
Appl Immunohistochem Mol Morphol ; 31(5): 318-323, 2023.
Article in English | MEDLINE | ID: mdl-37093706

ABSTRACT

Breast cancer is a major health burden, and up to one-third of patients with breast cancer develop brain metastases, which are linked to a very poor prognosis. Few biomarkers are available to predict the prognosis of patients with metastases. Assessment by immunohistochemistry may be used as a tool to predict the behavior of these tumors. A retrospective transversal study including 114 patients (diagnosed between 2000 and 2016) with breast cancer brain metastases was carried out using archival biological material from 114 patients with breast cancer brain metastases. Expression of CD44, HER2, ER, PR, CA9, PDL-1, CD133, ALDH1, PTEN, AKT, PI3K, and AR markers was assessed by immunohistochemistry. The overexpression of CD44 and AKT was associated with worse overall survival ( P =0.047 and P =0,034, respectively), on univariate analysis, in the cohort of parenchymal and bone metastases; the impact of AKT expression was also evident in the parenchymal cohort on uni ( P =0.021) and multivariate analysis ( P =0.027). The remaining markers did not exhibit a statistical correlation. Immunohistochemistry markers such as CD44 and AKT may have a prognostic impact on survival in patients with breast cancer brain metastases. The conjugation with other markers may help with the stratification of patients and therapy.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Proto-Oncogene Proteins c-akt , Retrospective Studies , Biomarkers, Tumor/metabolism , Hyaluronan Receptors
9.
Gels ; 9(3)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36975649

ABSTRACT

Presently, skin burns are considered one of the main public health problems and lack therapeutic options. In recent years, silver nanoparticles (AgNPs) have been widely studied, playing an increasingly important role in wound healing due to their antibacterial activity. This work is focused on the production and characterization of AgNPs loaded in a Pluronic® F127 hydrogel, as well as assessing its antimicrobial and wound-healing potential. Pluronic® F127 has been extensively explored for therapeutic applications mainly due to its appealing properties. The developed AgNPs had an average size of 48.04 ± 14.87 nm (when prepared by method C) and a negative surface charge. Macroscopically, the AgNPs solution presented a translucent yellow coloration with a characteristic absorption peak at 407 nm. Microscopically, the AgNPs presented a multiform morphology with small sizes (~50 nm). Skin permeation studies revealed that no AgNPs permeated the skin after 24 h. AgNPs further demonstrated antimicrobial activity against different bacterial species predominant in burns. A chemical burn model was developed to perform preliminary in vivo assays and the results showed that the performance of the developed AgNPs loaded in hydrogel, with smaller silver dose, was comparable with a commercial silver cream using higher doses. In conclusion, hydrogel-loaded AgNPs is potentially an important resource in the treatment of skin burns due to their proven efficacy by topical administration.

10.
J Adv Res ; 41: 113-128, 2022 11.
Article in English | MEDLINE | ID: mdl-36328741

ABSTRACT

INTRODUCTION: Non-healing wounds remain a major burden due to the lack of effective treatments. Mesenchymal stem cell-derived exosomes (MSC-Exo) have emerged as therapeutic options given their pro-regenerative and immunomodulatory features. Still, little is known on the exact mechanisms mediated by MSC-Exo. Importantly, modulation of their efficacy through 3D-physiologic cultures together with loading strategies continues underexplored. OBJECTIVES: To uncover the MSC-Exo-mediated mechanism via proteomic analyses, and to use 3D-culture and loading technologies to expand MSC-Exo efficacy for cutaneous wound healing. METHODS: MSC-Exo were produced in either 3D or 2D cultures (Exo3D/Exo2D) and loaded with an exogenous immunosuppressive oligodeoxynucleotide (A151 ODN). Both, loaded and naïve exosomes were characterised regarding size, morphology and the presence of specific protein markers; while IPA analyses enabled to correlate their protein content with the effects observed in vitro and in vivo. The Exo3D/Exo2D regenerative potential was evaluated in vitro by assessing keratinocyte and fibroblast mitogenicity, motogenicity, and cytokine secretion as well as using an in vivo wound splinting model. Accordingly, the modulation of inflammatory and immune responses by A151-loaded Exo3D/Exo2D was also assessed. RESULTS: Exo3D stimulated mitogenically and motogenically keratinocytes and fibroblasts in vitro, with upregulation of IL-1α and VEGF-α or increased secretion of TGF-ß, TNF-α and IL-10. In vivo, Exo3D reduced the granulation tissue area and promoted complete re-epithelization of the wound. These observations were sustained by the proteomic profiling of the Exo3D cargo that identified wound healing-related proteins, such as TGF-ß, ITGA1-3/5, IL-6, CDC151, S100A10 and Wnt5α. Moreover, when loaded with A151 ODN, Exo3D differentially mediated wound healing-related trophic factors reducing the systemic levels of IL-6 and TNF-α at the late stage of wound healing in vivo. CONCLUSION: Our results support the potential of A151-loaded Exo3D for the treatment of chronic wounds by promoting skin regeneration, while modulating the systemic levels of the pro-inflammatory cytokines.


Subject(s)
Exosomes , Exosomes/metabolism , Tumor Necrosis Factor-alpha/metabolism , Proteomics , Interleukin-6/metabolism , Immunity , Transforming Growth Factor beta/metabolism
11.
Colloids Surf B Biointerfaces ; 220: 112901, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36215895

ABSTRACT

Photodynamic therapy uses photosensitizer molecules for the photo-mediated treatment of several diseases such as cancer and skin disorders. However, most of the photosensitizer molecules present problems such as aggregation and low solubility in physiological environments which hinders the treatment efficacy. To overcome these problems, the development of stable liposomes loading photosensitizing molecules as delivery systems can be explored as promising alternatives to enhance cellular uptake and the therapy's efficacy. In this work, liposomes composed by different lipids with or without surfactants were characterized for the encapsulation of photosensitizer molecules such as Methylene Blue (MB) and Acridine Orange (AO). Liposomes were produced by the thin-film hydration method followed by extrusion to reduce particle size and were characterized by Dynamic Light Scattering and Atomic Force Microscopy. Encapsulation efficiency was evaluated as well as the release profile of these molecules from the liposome systems. Cytotoxicity and phototoxicity studies were performed on keratinocytes with and without carcinoma. Results showed that liposome's stability depends on the composition of lipids regardless of the presence of surfactants. Most stable liposomes were those with cholesterol plus the surfactants Span® 80 or sodium cholate that were able to provide higher stability for the liposomes considering the MB and AO encapsulation. Encapsulation efficiency (EE) studies revealed that AO had greater affinity for the vesicles presenting high EE (>98%) while for MB the encapsulation was, in general, moderate (between 63% and 86%). Greater phototoxicity was observed for MET1 squamous cell carcinoma (SCC) cells treated with AO liposomes, achieving similar half-maximal inhibition concentration (IC50) as for the free drug. Finally, two different possible approaches were found, namely, MB-liposomes with potential as a cytotoxic agent for cancer cells; and AO liposomes with a great phototoxicity potential at very low concentrations.


Subject(s)
Photochemotherapy , Skin Neoplasms , Humans , Liposomes , Acridine Orange , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Methylene Blue/pharmacology , Photochemotherapy/methods , Skin Neoplasms/drug therapy , Surface-Active Agents , Lipids
12.
Sci Total Environ ; 840: 156485, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-35688249

ABSTRACT

Honey bee colonies have shown abnormal mortality rates over the last decades. Colonies are exposed to biotic and abiotic stressors including landscape changes caused by human pressure. Modern agriculture and even forestry, rely on pesticide inputs and these chemicals have been indicated as one of the major causes for colony losses. Neonicotinoids are a common class of pesticides used worldwide that are specific to kill insect pests, with acetamiprid being the only neonicotinoid allowed to be applied outdoors in the EU. To evaluate honeybees' exposure to acetamiprid under field conditions as well as to test the use of in-situ tools to monitor pesticide residues, two honeybee colonies were installed in five Eucalyptus sp. plantations having different area where Epik® (active substance: acetamiprid) was applied as in a common spraying event to control the eucalyptus weevil pest. Flowers, fresh nectar, honey bees and colony products samples were collected and analyzed for the presence of acetamiprid residues. Our main findings were that (1) acetamiprid residues were found in samples collected outside the spraying area, (2) the amount of residues transported into the colonies increased with the size of the sprayed area, (3) according to the calculated Exposure to Toxicity Ratio (ETR) values, spraying up to 22 % of honeybees foraging area does not harm the colonies, (4) colony products can be used as a valid tool to monitor colony accumulation of acetamiprid and (5) the use of Lateral Flow Devices (LFDs) can be a cheap, fast and easy tool to apply in the field, to evaluate the presence of acetamiprid residues in the landscape and colony products.


Subject(s)
Eucalyptus , Insecticides , Pesticides , Animals , Bees , Insecticides/toxicity , Neonicotinoids/toxicity , Risk Assessment
13.
Food Chem ; 391: 133261, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35640336

ABSTRACT

Discovery of new selective anticancer, anti-inflammatory, and anti-microbial agents is a crucial and necessary step to ensure a pipeline for innovative products to improve disease management. Several new bioactive agents derived from plants have been investigated and an example is the steroidal glycoalkaloid (SGA) class of natural products found in plants, investigated for their health-beneficial biological activities. Among them, α-tomatine is a SGA derived from the plant parts of unripe green tomatoes. In this review we aimed at searching for two different perspectives to study α-tomatine from green tomatoes, namely from its dual action point of view: as an anti-nutrient and as a health promoter. The aspects associated to its synthesis and degradation were considered. Finally, the current strategies for its extraction from natural sources and the methodologies commonly used for its identification and quantification were discussed.


Subject(s)
Anti-Infective Agents , Solanum lycopersicum , Anti-Infective Agents/metabolism , Anti-Inflammatory Agents/metabolism , Humans , Solanum lycopersicum/metabolism , Tomatine/analogs & derivatives , Tomatine/metabolism
14.
Sci Total Environ ; 837: 155710, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35526620

ABSTRACT

Agricultural intensification has increased the number of stressors that pollinators are exposed to. Besides increasing landscape fragmentation that limit the supply of flower resources, intensive agricultural practices relying on the use of pesticides to control agricultural pests also affect non-target organisms like honey bees. The use of most pesticides containing neonicotinoids has been severely restricted in the European Union, leaving pesticides containing acetamiprid as the only ones that are still authorized. In the meantime, new substances like sulfoxaflor, that have a similar mode of action acting on the insect's nicotinic acetylcholine receptors (nAChR), have been approved for agricultural use. In Europe and USA, the use of pesticides containing this active ingredient is limited due to toxic effects already reported on bees, but no restrictions regarding this matter were applied in other countries (e.g., Brazil). In this study, homing ability tests with acetamiprid and sulfoxaflor were performed, in which honey bees were fed with three sub-lethal doses from each substance. After exposure, each honey bee was equipped with an RFID chip and released 1 km away from the colony to evaluate their homing ability. No significant effects were detected in honey bees fed with 32, 48 and 61 ng of acetamiprid while a poor performance on their homing ability, with only 28% of them reaching the colony instead of 75%, was detected at a 26 ng/a.s./bee dose of sulfoxaflor. Although, both pesticides act on the nAChR, the higher sulfoxaflor toxicity might be related with the honey bees detoxifying mechanisms, which are more effective on cyano-based neonicotinoids (i.e., acetamiprid) than sulfoximines. With this study we encourage the use of homing ability tests to be a suitable candidate to integrate the future risk assessment scheme, providing valuable data to models predicting effects on colony health that emerge from the individual actions of each bee.


Subject(s)
Insecticides , Pesticides , Receptors, Nicotinic , Animals , Bees , Insecticides/toxicity , Neonicotinoids/toxicity , Pesticides/toxicity , Pyridines , Sulfur Compounds/toxicity
15.
Cytogenet Genome Res ; 162(1-2): 28-33, 2022.
Article in English | MEDLINE | ID: mdl-35477180

ABSTRACT

A palette of copy number changes in long-term epilepsy-associated tumors (LEATs) have been reported, but the data are heterogeneous. To better understand the molecular basis underlying the development of LEATs, we performed array-comparative genomic hybridization analysis to investigate chromosomal imbalances across the entire genome in 8 cases of LEATs. A high number of aberrations were found in 4 patients, among which deletions predominated. Both whole-chromosome and regional abnormalities were observed, including monosomy 19, deletion of 1p, deletions of 4p, 12p, and 22q, and gain of 20p. The common altered regions are located mainly on chromosomes 19 and 4p, identifying genes potentially involved in biological processes and cellular mechanisms related to tumorigenesis. Our study highlights new genomic alterations and reinforces others previously reported, offering new molecular insights that may help in diagnosis and therapeutic decision-making.


Subject(s)
Epilepsy , Neoplasms , Chromosome Aberrations , Comparative Genomic Hybridization , Epilepsy/genetics , Genomics , Humans , Monosomy , Nucleic Acid Hybridization
16.
AAPS PharmSciTech ; 23(4): 107, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35381882

ABSTRACT

Palatability and swallowability in the pediatric population are perceived as true challenges in the oral administration of medication. Pediatric patients have high sensitivity to taste and reduced ability to take solid dosage forms, which can often lead to a poor therapeutic compliance. It is crucial to find new strategies to simplify the oral administration of drugs to children. The present paper reports the development of a new hydrogel vehicle adapted to the pediatric population. Several polymers with similar properties were selected and adjustments were made to obtain the desired characteristics of the final product. The developed formulations were studied for organoleptic properties, rheology, mucoadhesion properties, preservative efficacy, and stability. Physical and chemical compatibilities between the vehicle and several drugs/medicines, at the time of administration, were also studied. Six final formulations with different polymers, odor, and color were chosen, and no known interactions with medications were observed. The proposed new oral vehicles are the first sugar-free vehicle hydrogels designed to make the intake of oral solid forms a more pleasant and safer experience for pediatric patients.


Subject(s)
Hydrogels , Pediatrics , Administration, Oral , Child , Excipients , Humans , Patient Compliance
17.
Molecules ; 27(5)2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35268802

ABSTRACT

Tomato producing and processing industries present undoubted potential for industrial discarded products valorization whether due to the overproduction of fresh tomatoes or to the loss during processing. Although tomato by-products are not yet considered a raw material, several studies have suggested innovative and profitable applications. It is often referred to as "tomato pomace" and is quite rich in a variety of bioactive compounds. Lycopene, vitamin C, ß-carotene, phenolic compounds, and tocopherol are some of the bioactives herein discussed. Tomato by-products are also rich in minerals. Many of these compounds are powerful antioxidants with anti-inflammatory properties besides modulating the immune system. Several researchers have focused on the possible application of natural ingredients, especially those extracted from foods, and their physiological and pharmacological effects. Herein, the effects of processing and further applications of the bioactive compounds present in tomato by-products were carefully reviewed, especially regarding the anti-inflammatory and anti-cancer effects. The aim of this review was thus to highlight the existing opportunities to create profitable and innovative applications for tomato by-products in health context.


Subject(s)
Solanum lycopersicum
18.
Pharmaceutics ; 14(3)2022 Feb 27.
Article in English | MEDLINE | ID: mdl-35335906

ABSTRACT

The drugs concept has changed during the last few decades, meaning the acceptance of not only low molecular weight entities but also macromolecules as bioagent constituents of pharmaceutics. This has opened a new era for a different class of molecules, namely proteins in general and enzymes in particular. The use of enzymes as therapeutics has posed new challenges in terms of delivery and the need for appropriate carrier systems. In this review, we will focus on enzymes with therapeutic properties and their applications, listing some that reached the pharmaceutical market. Problems associated with their clinical use and nanotechnological strategies to solve some of their drawbacks (i.e., immunogenic reactions and low circulation time) will be addressed. Drug delivery systems will be discussed, with special attention being paid to liposomes, the most well-studied and suitable nanosystem for enzyme delivery in vivo. Examples of liposomal enzymatic formulations under development will be described and successful pre-clinical results of two enzymes, L-Asparaginase and Superoxide dismutase, following their association with liposomes will be extensively discussed.

19.
Pharmaceutics ; 14(1)2022 Jan 03.
Article in English | MEDLINE | ID: mdl-35057000

ABSTRACT

Ischemia and reperfusion injury (IRI) is a common complication caused by inflammation and oxidative stress resulting from liver surgery. Current therapeutic strategies do not present the desirable efficacy, and severe side effects can occur. To overcome these drawbacks, new therapeutic alternatives are necessary. Drug delivery nanosystems have been explored due to their capacity to improve the therapeutic index of conventional drugs. Within nanocarriers, liposomes are one of the most successful, with several formulations currently in the market. As improved therapeutic outcomes have been demonstrated by using liposomes as drug carriers, this nanosystem was used to deliver quercetin, a flavonoid with anti-inflammatory and antioxidant properties, in hepatic IRI treatment. In the present work, a stable quercetin liposomal formulation was developed and characterized. Additionally, an in vitro model of ischemia and reperfusion was developed with a hypoxia chamber, where the anti-inflammatory potential of liposomal quercetin was evaluated, revealing the downregulation of pro-inflammatory markers. The anti-inflammatory effect of quercetin liposomes was also assessed in vivo in a rat model of hepatic IRI, in which a decrease in inflammation markers and enhanced recovery were observed. These results demonstrate that quercetin liposomes may provide a significant tool for addressing the current bottlenecks in hepatic IRI treatment.

20.
J Dermatolog Treat ; 33(1): 2-22, 2022 Feb.
Article in English | MEDLINE | ID: mdl-32056472

ABSTRACT

Wound healing is a complex physiological process that occurs in the human body involving the sequential activation of multiple cell types and signaling pathways in a coordinated manner. Chronic wounds and burns clearly decrease quality of life of the patients since they are associated with an increase in physical pain and socio-economical complications. Furthermore, incidence and prevalence of chronic wounds (unlike burns) have been increasing mainly due to population aging resulting in increased costs for national health systems. Thus, the development of new and more cost-effective technologies/therapies is not only of huge interest but also necessary to improve the long-term sustainability of national health systems. This review covers the current knowledge on recent technologies/therapies for skin regeneration, such as: wound dressings; skin substitutes; exogenous growth factor based therapy and systemic therapy; external tissue expanders; negative pressure; oxygen; shock wave, and photobiomodulation wound therapies. Associated benefits and risks as well as the clinical use and availability are all addressed for each therapy. Moreover, future trends in wound care including novel formulations using metallic nanoparticles and topical insulin are herein presented. These novel formulations have shown to be promising therapeutic options in the near future that may change the wound care paradigm.


Subject(s)
Burns , Skin, Artificial , Bandages , Humans , Quality of Life , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...