Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 475: 134804, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38880042

ABSTRACT

Microplastics (MPs), omnipresent contaminants in the ocean, could be carried by seawater intrusion into coastal aquifers, which might affect the fate of heavy metals existing in aquifers. Herein, we investigated the release behavior of arsenic (As) in coastal aquifers during MPs-containing seawater intrusion by applying laboratory experiment and numerical simulation. We found that seawater with marine MPs enhanced the release of As in aquifers, especially for dissolved As(V) and colloidal As. Negatively charged MPs competed with As(V) for the adsorption sites on iron (hydr)oxides in aquifers, resulting in the desorption of As(V). In addition, MPs could promote the release of Fe-rich colloids by imparting negative charge to its surface and providing it with sufficient repulsive force to detach from the matrix, thereby leading to the release of As associated with Fe-rich colloid. We also developed a modeling approach that well described the transport of As in coastal aquifer under the impact of MPs, which coupled variable density flow and kinetically controlled colloids transport with multicomponent reactive transport model. Our findings elucidated the enhancement of MPs on the release of As in aquifers during seawater intrusion, which provides new insights into the risk assessment of MPs in coastal zones.

2.
J Hazard Mater ; 463: 132882, 2024 02 05.
Article in English | MEDLINE | ID: mdl-37939559

ABSTRACT

The simulated in-vitro gastrointestinal method provides a simple way to evaluate the health risk of human body exposed to soil contaminants. Several in-vitro methods have been successfully established for soil As, Pb, and Cd. However, the method development for soil Cr failed up to now, which could be resulted from alteration in the species of Cr (e.g., Cr(VI)/Cr(III)) caused by the gastrointestinal digestion components, ultimately affecting the accessibility of Cr. This study explored the transformation and bioaccessibility of Cr in two Cr-contaminated soils during the physiologically based extraction test. The water-soluble and exchangeable Cr in soil was dissolved in gastrointestinal tract, accompanied with reduction of Cr(VI) into Cr(III), and the reduction occurred after the chemical extraction in two soils rather than during the extraction. Pepsin and organic acids in gastric phase could reduce Cr(VI) into Cr(III) and reduction efficiency were 20.4%- 53.0%, while in intestinal phase, pancreatin and bile salt had little effect on the Cr(VI) reduction, instead, more Cr(VI) was released from soil. In the gastric solution, Cr(VI) was mainly present as HCrO4- and Cr(III) as free Cr3+ ion. In the intestinal phase, Cr(VI) mainly occurred as CrO42- and Cr(III) as Cr(OH)3 (aq). Cr in the soil solid phase was dominated as the precipitates of Cr-Fe oxide, which was hardly extracted. Bioaccessibility of Cr in gastric phase increased as extraction duration increased and decreased in the intestinal phase, the contrary trend was observed for the hazard quotient of Cr in two phases due to Cr(VI)/Cr(III) transformation. This study indicates that the gastrointestinal components could influence the Cr transformation and subsequently affect the Cr bioaccessibility, which would help for a successful establishment of in vitro determination method for soil Cr bioaccessibility.


Subject(s)
Soil Pollutants , Soil , Humans , Chromium/toxicity , Chromium/analysis , Stomach/chemistry , Digestion , Soil Pollutants/analysis
3.
Environ Sci Pollut Res Int ; 30(39): 90993-91006, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37468782

ABSTRACT

Microplastics (MPs) inevitably undergo multiple aging processes during their life cycle in the environment. However, the information regarding the mechanical fragmentation behavior of MPs remained unclear, including the changes in the intrinsic properties of aged MPs, the measurement of aging degree, the underlying mechanism, and the interaction with heavy metals. Here, MPs (PS, PP, PET) were aged by crushing (-CR) and ball-milling (-BM) to simulate mild and severe mechanical fragmentation, respectively. Our results indicated that mechanical fragmentation significantly affected the morphology of MPs. The aging degree of MP-BM was deeper compared to MP-CR owing to smaller particle size, larger specific surface area, poorer heat resistance, better hydrophilicity, and richer oxygen-containing functional groups. The carbonyl index (CI) and O/C ratio were used to measure the aging degree of the two mechanical aging treatments. Besides, the mechanism was proposed and the discrepancy between the two treatments was elaborated from three aspects including the excitation energy source, reaction interface, and reaction dynamics. Furthermore, the extrinsic properties of MPs altered with the increase of aging degree; specifically, the adsorption capacities of heavy metals were enhanced. Meanwhile, it was unveiled that the CI value and O/C ratio played a vital role in estimating the adsorption ability of heavy metals. The findings not only reveal the mechanical fragmentation behavior of MPs but also provide new insights into the assessment of the potential risks of the aged MPs via chemical indexes.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Microplastics/chemistry , Plastics/chemistry , Water Pollutants, Chemical/analysis , Metals, Heavy/chemistry , Adsorption
4.
Environ Sci Pollut Res Int ; 30(7): 17804-17816, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36203042

ABSTRACT

Application of biochar to treat heavy metal polluted wastewater has received increasing attention; however, the immobilization ability of pristine biochar for metal ions is still limited. In this study, phosphate tailing was co-pyrolyzed with sawdust and peanut shell to acquire phosphorus-rich biochars with high removal rates for Cd, Zn, Pb, and Cu. Meanwhile, the improvement mechanisms by phosphate tailing were clarified by XRD, FTIR, SEM-EDS, BET-N2, and model fitting. Results showed that after phosphate tailing impregnation, surface area of sawdust, and peanut shell biochars increased from to 11.6 m2 g-1, and from 43.5 to 53.4 m2 g-1, respectively. Functional groups of -COOH and CO32- on biochar increased and the P2O74- newly generated. Besides, large amounts of Ca(PO3)2 and Ca2P2O7 crystals were detected in biochar ash. As for sawdust biochar, loading of phosphate tailing raised the sorption rates of Cd, Zn, Pb, and Cu by 0.35, 0.61, 1.10, and 2.64 times, respectively, as for peanut shell biochar, it was raised by 0.12, 0.47, 0.11, and 1.98 times, respectively. The sorption isotherms by phosphate tailing-loaded biochars were better fitted to Langmuir (R2 = 0.85-1.00) than Freundlich model (R2 = 0.58-0.91). Heavy metals could bind with -OH and -COOH on phosphate tailing-loaded biochars, meanwhile generated phosphorus-rich precipitation with PO3- and P2O74+, including Cd2P2O7, Cd(PO3)2, Zn (PO3)2, Pb (PO3)2, Pb2P2O7, Cu(PO3)2, and Cu2P2O7. This study proposed an innovative method to produce phosphorus-rich biochars by loading phosphate tailing for highly efficient removal of heavy metals from water bodies, and also realized the resource utilization of phosphate tailing, which was of great significance to reduce environmental pollution.


Subject(s)
Cadmium , Metals, Heavy , Phosphates , Phosphorus , Pyrolysis , Biomass , Lead , Metals, Heavy/chemistry , Charcoal/chemistry , Adsorption
5.
Bioresour Technol ; 241: 887-899, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28629105

ABSTRACT

Biochar typically consists of both carbon and mineral fractions, and the carbon fraction has been generally considered to determine its properties and applications. Recently, an increasing body of research has demonstrated that mineral components inherent in biochar, such as alkali or alkaline earth metals in the form of carbonates, phosphates, or oxides, could also influence the properties and thus the applications. The review articles published thus far have mainly focused on multiple environmental and agronomic applications of biochar, including carbon sequestration, soil improvement, environmental remediation, etc. This review aims to highlight the indispensable role of the mineral fraction of biochar in these different applications, especially in environmental applications. Specifically, it provides a critical review of current research findings related to the mineral composition of biochar and the effect of the mineral fraction on the physicochemical properties, contaminant sorption, carbon retention and stability, and nutrient bioavailability of biochar. Furthermore, the role of minerals in the emerging applications of biochar, as a precursor for fuel cells, supercapacitors, and photoactive components, is also summarized. Overall, inherent minerals should be fully considered while determining the most appropriate application for any given biochar. A thorough understanding of the role of biochar-bound minerals in different applications will also allow the design or selection of the most suitable biochar for specific applications based on the consideration of feedstock composition, production parameters, and post-treatment.


Subject(s)
Carbon Sequestration , Charcoal , Minerals , Soil
6.
Chemosphere ; 182: 15-21, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28482257

ABSTRACT

This study aims to develop an amendment for simultaneous immobilization of Zn and Cr(VI) in an abandoned electroplating contaminated soil. Nature phosphate rock was first activated with oxalic acid (O-PR) and then combined with FeSO4 or zero-valent iron (ZVI) for immobilization of Zn and Cr(VI) from aqueous solutions. Finally, the optimized approach showing the highest immobilization ability in solution was applied in an electroplating contaminated soil. The O-PR combined with FeSO4 was more effective in simultaneously removing Zn and Cr(VI) than the O-PR integrated with ZVI within the tested solution pH range of 5.5-8.5. Both O-PR with FeSO4 and with ZVI removed over 95% of Zn from the solution; however, only 42-46% of Cr(VI) was immobilized by O-PR with ZVI, while O-PR with FeSO4 almost precipitated all Cr(VI). Moreover, there were 75-95% Zn and 95-100% Cr(VI) remaining in the exhausted O-PR with FeSO4 solid after toxicity characteristic leaching test (TCLP) while the exhausted O-PR with ZVI solid only retained 44-83% Zn and 32-72% Cr(VI). Zinc was immobilized mainly via formation of insoluble Fe-Zn phosphate co-precipitates, while iron-induced reduction of Cr(VI) into stable Cr(OH)3 or CrxFe(1-x)(OH)3 was responsible for Cr(VI) immobilization. Application of the O-PR integrated with FeSO4 in the electroplating contaminated soil rapidly reduced the TCLP extractable Zn and Cr(VI) to below the standard limits, with decrease by 50% and 94%, respectively. This study revealed that combination of oxalic acid activated phosphate rock with FeSO4 could be an effective amendment for remediation of Zn and Cr(VI) contaminated soil.


Subject(s)
Chromium/isolation & purification , Electroplating/methods , Iron/chemistry , Phosphates/chemistry , Soil Pollutants/isolation & purification , Zinc/isolation & purification , Ferrous Compounds/chemistry , Oxalic Acid/chemistry , Soil Pollutants/chemistry
7.
Ecotoxicol Environ Saf ; 137: 158-164, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27930968

ABSTRACT

Accidental ingestion of contaminated soil has been recognized as an important pathway of human exposure to lead (Pb), especially for children through hand-to-mouth activities. Intake of food following the soil ingestion may affect the bioaccessibility of Pb in the gastrointestinal tract. In this study, the effect of steamed bread on the transformation and subsequent bioaccessibility of Pb in two soils was determined by the physiologically based extraction test (PBET). Two compounds, Pb(NO3)2 and PbCO3, were included in the evaluation for comparison. In the gastric phase, Pb bioaccessibility decreased as the steamed bread increased due to the sorption of Pb on the undissolved steamed bread, especially in PbCO3, Pb bioaccessibility decreased from 95.03% to 85.40%. Whereas in the intestinal phase, Pb bioaccessibility increased from 1.85% to 5.66% and from 0.89% to 1.80% for Pb(NO3)2 and PbCO3, respectively. The increase was attributed to the transformation of formed Pb carbonates into soluble organic-Pb complexes induced by the dissolved steamed bread at neutral pH as indicated by MINTEQ modeling. For the PbCO3-contaminated soil, the change in Pb bioaccessibility in both gastric and intestinal phases behaved like that in the pure PbCO3 compound, the steamed bread increased the bioaccessibility of Pb in the intestinal phase, but the decreased bioaccessibility of Pb was observed in the gastric phase after the steamed bread was added. However, in the soil contaminated with free Pb2+ or sorbed Pb forms, the steamed bread increased the Pb bioaccessibility in both gastric and intestinal phases. This was probably due to the higher dissolved organic carbon induced transformation of sorbed Pb (Pb sorbed by Fe/Mn oxides) into soluble Pb-organic complex. Results from this study indicated that steamed bread had an influence on the Pb speciation transformation, correspondingly affecting Pb bioaccessibility in the gastrointestinal tract.


Subject(s)
Bread/analysis , Gastrointestinal Tract/drug effects , Lead/pharmacokinetics , Soil Pollutants/toxicity , Biological Availability , Biotransformation , Carbonates/pharmacokinetics , Chemical Phenomena , Environmental Monitoring , Gastrointestinal Tract/metabolism , Humans , Hydrogen-Ion Concentration , Nitrates/pharmacokinetics , Soil/chemistry , Soil Pollutants/administration & dosage , Soil Pollutants/pharmacokinetics
8.
Chemosphere ; 138: 744-50, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26275597

ABSTRACT

In this study, Pb(NO3)2-, PbSO4-, or PbCO3-contaminated soils were treated with triple super phosphate (TSP) or phosphate rock (PR) and then subjected to the toxicity characteristic leaching procedure (TCLP) to assess Pb leachability. Soluble TSP resulted in the transformation of Pb into insoluble Pb phosphate precipitates in all contaminated soils, and the transformation increased with extended leaching times. Consequently, Pb concentrations in the TCLP leachates treated with TSP were reduced by 97.3-99.7% compared with the untreated soils, and Pb leaching decreased over the extraction time and did not reach equilibrium even after 96 h of extraction. Precipitation of Pb phosphate minerals in the less soluble PR-treated soil was limited, and Pb leaching was controlled by the dissolution of the Pb compounds, resulting in elevation of Pb in the TCLP leachate. Pb leaching continued to increase with time due to continuous dissolution of PbSO4 and PbCO3. The results indicated that Pb leaching is kinetically controlled by either Pb compound dissolution or phosphate mineral formation. The standard TCLP test using a designated 18 h incubation time can overestimate the leachability of Pb in soils contaminated with lead and amended with soluble TSP and underestimate the leachability of Pb in soils contaminated with Pb and amended with less soluble PR. Therefore, wide use of TCLP for assessing Pb leachability in all contaminated soils is insufficient, and development of a site-specific evaluation method is urgently needed.


Subject(s)
Environmental Monitoring/methods , Lead/analysis , Models, Theoretical , Phosphates/chemistry , Soil Pollutants/analysis , Soil/chemistry , Chemical Precipitation , Computer Simulation , Lead/toxicity , Soil Pollutants/toxicity , Solubility , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...