Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 272: 115975, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33168374

ABSTRACT

In this work, the novel technology was used to remove heavy metal from sludge. The coupled with biodegradable ethylenediamine disuccinic acid (EDDS) and approaching anode electrokinetic (AA-EK) technique was used to enhance heavy metal removing from sludge. Electric current, sludge and electrolyte characteristics, heavy metal removal efficiency and residual content distribution, and heavy metal fractions percentage of variation were evaluated during the electrokinetic remediation process. Results demonstrated that the coupled with EDDS and AA-EK technique obtain a predominant heavy metal removal efficiency, and promote electric current increasing during the enhanced electrokinetic remediation process. The catholyte electrical conductivity was higher than the anolyte, and electrical conductivity of near the cathode sludge achieved a higher value than anode sludge during the coupled with EDDS and AA-EK remediation process. AA-EK technique can produce a great number of H+, which caused the sludge acidification and pH decrease. Cu, Zn, Cr, Pb, Ni and Mn obtain the highest extraction efficiency after the coupled with EDDS and AA-EK remediation, which were 52.2 ± 2.57%, 56.8 ± 3.62%, 60.4 ± 3.62%, 47.2 ± 2.35%, 53.0 ± 3.48%, 54.2 ± 3.43%, respectively. Also, heavy metal fractions analysis demonstrated that the oxidizable fraction percentage decreased slowly after the coupled with EDDS and AA-EK remediation.


Subject(s)
Environmental Restoration and Remediation , Metals, Heavy , Soil Pollutants , Electricity , Electrodes , Ethylenediamines , Metals, Heavy/analysis , Sewage , Soil Pollutants/analysis
2.
Water Sci Technol ; 81(6): 1209-1220, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32597407

ABSTRACT

It has been proved that the nitrogen can be removed from the sediment in a sediment microbial fuel cell system (SMFCs), but the competition between nitrate and oxygen for electrons would be a key factor that would affect the removal efficiency, and its mechanism is not clear. Based on organic sediment fuel, an SMFC was constructed, and the influence of dissolved oxygen (DO) on nitrogen transformation and cathodic microbial communities was investigated. The results showed that the best total nitrogen removal efficiency of 60.55% was achieved at DO level of 3 mg/L. High DO concentration affected the removal efficiency through the electrons' competition with nitrate, while low DO concentration suppressed the nitrification. Comamonas, Diaphorobacter and Brevundimonas were the three dominant genera responsible for denitrification at DO concentration of 3 mg/L in this study. The establishment of SMFCs for nitrogen removal by regulating DO level would offer a promising method for sediment treatment.


Subject(s)
Bioelectric Energy Sources , Denitrification , Electrons , Nitrification , Nitrogen , Oxygen
3.
RSC Adv ; 10(23): 13480-13488, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-35493021

ABSTRACT

The effects of harmful algal blooms (HABs) on nutrient dynamics have been extensively studied; however, the response of nitrogen to continuous HAB degradation and subsequent reoccurrence is not well understood. Here, a small-scale experiment was conducted to assess how nitrogen in the sediment-water interface (SWI) responds to HAB degradation and subsequent reoccurrence at different initial algal densities. The results showed that during the algae decomposition stage, the NH4 +-N flux of the SWI remained positive but decreased with the increase in algal density from 3.5 × 107 to 2.3 × 108 cells per L, indicating that the sediment was the source of NH4 +-N. In contrast, the deposit was a sink of NO3 --N. However, during the reoccurrence of HAB, the distribution of NH4 +-N and NO3 --N fluxes was completely converted. Nitrogen flux analysis throughout algae decomposition and reoccurrence indicated that although the sediment acted as a sink of nitrogen, the flux was dependent on the initial algal density. Our results confirmed that algae decomposition and reoccurrence would greatly affect the nitrogen cycle of the SWI, during which dissolved oxygen (DO) and initial algal density dominated. This study is the first to show that the regulation of nitrogen flux and migration changes during continuous HAB decomposition and subsequent reoccurrence.

SELECTION OF CITATIONS
SEARCH DETAIL
...