Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Cytokine ; 175: 156484, 2024 03.
Article in English | MEDLINE | ID: mdl-38159471

ABSTRACT

The anti-inflammatory role of physical exercise is mediated by interleukin 10 (IL-10), and their release is possibly upregulated in response to IL-6. Previous studies demonstrated that mice lacking IL-6 (IL-6 KO mice) exhibited diminished exercise tolerance, and reduced strength. Rev-erbα, a transcriptional suppressor involved in circadian rhythm, has been discovered to inhibit the expression of genes linked to bodily functions, encompassing inflammation and metabolism. It also plays a significant role in skeletal muscle and exercise performance capacity. Given the potential association between Rev-erbα and the immune system and the fact that both pathways are modulated following acute aerobic exercise, we examined the physical performance of IL-10 KO mice and analyzed the modulation of the atrophy and Rev-erbα pathways in the muscle of wild type (WT) and IL-10 KO mice following one session of acute exercise. For each phenotype, WT and IL-10 KO were divided into two subgroups (Control and Exercise). The acute exercise session started at 6 m/min, followed by 3 m/min increments every 3 min until animal exhaustion. Two hours after the end of the exercise protocol, the gastrocnemius muscle was removed and prepared for the reverse transcription-quantitative polymerase chain reaction (RT-q-PCR) and immunoblotting technique. In summary, compared to WT, the IL-10 KO animals showed lower body weight and grip strength in the baseline. The IL-10 control group presented a lower protein content of BMAL1. After the exercise protocol, the IL-10 KO group had higher mRNA levels of Trim63 (atrophy signaling pathway) and lower mRNA levels of Clock and Bmal1 (Rev-erbα signaling pathway). This is the first study showing the relationship between Rev-erbα and atrophy in IL-10 KO mice. Also, we accessed a public database that analyzed the gastrocnemius of MuRF KO mice submitted to two processes of muscle atrophy, a denervation surgery and dexamethasone (Dexa) injections. Independently of knockout, the denervation demonstrated lower Nr1d1 levels. In conclusion, IL-10 seems to be a determinant in the Rev-erbα pathway and atrophy after acute exercise, with no modulation in the baseline state.


Subject(s)
ARNTL Transcription Factors , Interleukin-10 , Animals , Mice , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Atrophy , Interleukin-10/genetics , Interleukin-6/genetics , Mice, Knockout , Muscle Proteins/genetics , Muscle, Skeletal/metabolism , RNA, Messenger/metabolism , Tripartite Motif Proteins , Ubiquitin-Protein Ligases
2.
FASEB J ; 37(9): e23120, 2023 09.
Article in English | MEDLINE | ID: mdl-37527279

ABSTRACT

The α7nAChR is crucial to the anti-inflammatory reflex, and to the expression of neuropeptides that control food intake, but its expression can be decreased by environmental factors. We aimed to investigate whether microRNA modulation could be an underlying mechanism in the α7nAchR downregulation in mouse hypothalamus following a short-term exposure to an obesogenic diet. Bioinformatic analysis revealed Let-7 microRNAs as candidates to regulate Chrna7, which was confirmed by the luciferase assay. Mice exposed to an obesogenic diet for 3 days had increased Let-7a and decreased α7nAChR levels, accompanied by hypothalamic fatty acids and TNFα content. Hypothalamic neuronal cells exposed to fatty acids presented higher Let-7a and TNFα levels and lower Chrna7 expression, but when the cells were pre-treated with TLR4 inhibitor, Let-7a, TNFα, and Chrna7 were rescued to normal levels. Thus, the fatty acids overload trigger TNFα-induced Let-7 overexpression in hypothalamic neuronal cells, which negatively regulates α7nAChR, an event that can be related to hyperphagia and obesity predisposition in mice.


Subject(s)
Tumor Necrosis Factor-alpha , alpha7 Nicotinic Acetylcholine Receptor , Animals , Mice , alpha7 Nicotinic Acetylcholine Receptor/genetics , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Tumor Necrosis Factor-alpha/metabolism , Fatty Acids , Down-Regulation , Hypothalamus/metabolism
3.
Nutr Neurosci ; : 1-13, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37496309

ABSTRACT

This study attempted to analyze the effect of supplementing Wistar-Kyoto rats with fermented milk containing the probiotic Bifidobacterium animalis BB-12 and pomegranate juice on the microbiota-gut-brain axis of rats, with special focus on their behavior, sleep patterns, and response to stress. This study was divided into two experiments: (1) For the behavioral analysis the animals were divided into two groups: Fermented probiotic milk (BB + 1) and control (BB-). (2) For the sleep analysis the animals were divided into two groups: Fermented probiotic milk (BB + 2) and control (H2O). For the behavioral analysis, the open field method was used, which evaluates the behavior after ten, twenty, and thirty days of supplementation. For sleep analysis, the animals were submitted to implantation of electrodes and 24 h polysomnography, followed by 48 h sleep deprivation (REM) and 48 h polysomnography, then euthanized 100 days after the beginning of the experiment. In addition, animal feces were collected before and after sleep deprivation to assess its effects on the microbiota. A decrease in anxiety-related behaviors was observed in the supplemented animals and an increase in sleep efficiency and a reduction in the number of awakenings of the animals before deprivation. It has also been observed that sleep deprivation decreased the amount of total bacterial DNA. The number of copies of genomes of the genus Bifidobacterium did not differ in both groups.

4.
J Cell Biochem ; 124(4): 520-532, 2023 04.
Article in English | MEDLINE | ID: mdl-36791261

ABSTRACT

Gluten intolerance is associated with several disorders in the body. Although research has grown in recent years, the understanding of its impact on different tissues and the effects of physical exercise in mitigating health problems in the condition of gluten intolerance are still limited. Therefore, our objective was to test whether gliadin would affect metabolism and inflammation in liver tissue and whether aerobic physical exercise would mitigate the negative impacts of gliadin administration in rodents. Wistar rats were divided into exercised gliadin, gliadin, and control groups. Gliadin was administered by gavage from birth to 60 days of age. The rats in the exercised gliadin group performed an aerobic running exercise training protocol for 15 days. At the end of the experiments, physiological, histological, and molecular analyzes were performed in the study. Compared to the control group, the gliadin group had impaired weight gain and increased gluconeogenesis, lipogenesis, and inflammatory biomarkers in the liver. On the other hand, compared to the gliadin group, animals in the exercise-gliadin group had a recovery in body weight, improved insulin sensitivity, and a reduction in some gluconeogenesis, lipogenesis, and inflammatory biomarkers in the liver. In conclusion, our results revealed that the administration of gliadin from birth impaired weight gain and induced an increase in hepatic inflammatory cytokines, which was associated with an impairment of glycemic homeostasis in the liver, all of which were attenuated by adding aerobic exercise training in the gliadin group.


Subject(s)
Celiac Disease , Gliadin , Rats , Animals , Rats, Wistar , Celiac Disease/metabolism , Weight Gain , Inflammation/chemically induced , Inflammation/therapy , Biomarkers
5.
Cell Biochem Funct ; 41(1): 128-137, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36515301

ABSTRACT

Dysfunction of the adipose tissue metabolism is considered as a significant hallmark of aging. It has been proposed that α-ß hydrolase domain containing 5 (ABHD5) plays a critical role in the control of lipolysis. However, the role of ABHD5 in the control of lipolysis during aging or exercise is unknown. Here we combined the experimental mouse model with transcriptomic analyzes by using murine and human databases to explore the role of ABHD5 in the adipose tissue during aging and in response to exercise. Transcriptomic data revealed a downregulation of Abhd5 messenger RNA levels in the subcutaneous white adipose tissue (scWAT) over time in individuals from 20 to 69 years old. Aged mice displayed dramatic reduction of ABHD5 protein content and lipolytic-related proteins in the scWAT. Interestingly, 4 weeks of high-intensity interval training increased ABHD5 protein level and restored the lipolytic pathway in the scWAT of aged mice. Altogether, our findings demonstrated that aging affects ABHD5 content in the adipose tissue of mice and humans. Conversely, exercise increases ABHD5 activity, recovering the lipolytic activity in aged mice.


Subject(s)
1-Acylglycerol-3-Phosphate O-Acyltransferase , Adipose Tissue , Aging , Exercise , Lipolysis , Adult , Aged , Animals , Humans , Mice , Middle Aged , Young Adult , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics , 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism , Adipose Tissue/enzymology , Aging/metabolism , Hydrolases/genetics , Hydrolases/metabolism
6.
Life Sci ; 312: 121175, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36414092

ABSTRACT

Aging can modify the morphology and function of the liver, such as generating a decrease in the mitochondria content, autophagy, and cell senescence. Although exercise training has several beneficial effects on hepatic metabolism, its actions on autophagy processes, mitochondrial function, and cellular senescence need to be more widely explored. The present study verified the effects of aging and exercise on hepatic circadian markers, autophagy, and mitochondria activity in 24-month-old mice with a combined exercise training protocol. In addition, we used public datasets from human livers in several conditions and BMAL1 knockout mice. C57BL/6 mice were distributed into Control (CT, young, 6-month-old mice), sedentary old (Old Sed, sedentary, 24-month-old mice), and exercised old (Old Ex, 24-month-old mice submitted to a combined exercise training protocol). The exercise training protocol consisted of three days of endurance exercise - treadmill running, and two days of resistance exercise - climbing a ladder, for three weeks. At the end of the protocol, the liver was removed and prepared for histological analysis, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), immunoblotting technique, and oxygen consumption. Heatmaps were built using a human dataset and Bmal1 knockout samples. In summary, the Old Sed had reduced strength, coordination, and balance, as well as a decrease in Bmal1 expression and the presence of degenerated liver cells. Still, this group upregulated the transcription factors related to mitochondrial biogenesis. The Old Ex group had increased strength, coordination, and balance, improved glucose sensitivity, as well as restored Bmal1 expression and the mitochondrial transcription factors. The human datasets indicated that mitochondrial markers and autophagy strongly correlate with specific liver diseases but not aging. We can speculate that mitochondrial and autophagy molecular markers alterations may depend on long-term training.


Subject(s)
ARNTL Transcription Factors , Liver , Physical Conditioning, Animal , Animals , Mice , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Liver/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism
7.
Cell Biochem Funct ; 41(1): 86-97, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36415950

ABSTRACT

Many conditions, such as inflammation and physical exercise, can induce endoplasmic reticulum (ER) stress. Toll-like Receptor 4 (TLR4) can trigger inflammation and ER stress events. However, there are still no data in the literature regarding the role of TLR4 in ER stress during exercise in skeletal muscle. Therefore, the current investigation aimed to verify the responses of ER stress markers in wild-type (WT) and Tlr4 global knockout (KO) mice after acute and chronic physical exercise protocols. Eight-week-old male WT and KO mice were submitted to acute (moderate or high intensity) and chronic (4-week protocol) treadmill exercises. Under basal conditions, KO mice showed lower performance in the rotarod test. Acute high-intensity exercise increased eIF2α protein in the WT group. After the acute high-intensity exercise, there was an increase in Casp3 and Ddit3 mRNA for the KO mice. Acute moderate exercise increased the cleaved Caspase-3/Caspase-3 in the KO group. In response to chronic exercise, the KO group showed no improvement in any performance evaluation. The 4-week chronic protocol did not generate changes in ATF6, CHOP, p-IRE1α, p-eIF2α/eIF2α, and cleaved Caspase-3/Caspase-3 ratio but reduced BiP protein compared with the KO-Sedentary group. These results demonstrate the global deletion of Tlr4 seems to have the same effects on UPR markers of WT animals after acute and chronic exercise protocols but decreased performance. The cleaved Caspase-3/Caspase-3 ratio may be activated by another pathway other than ER stress in Tlr4 KO animals.


Subject(s)
Apoptosis , Muscle, Skeletal , Toll-Like Receptor 4 , Animals , Male , Mice , Caspase 3/metabolism , Endoplasmic Reticulum Stress , Endoribonucleases/metabolism , Inflammation/metabolism , Mice, Inbred C57BL , Mice, Knockout , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Physical Conditioning, Animal
8.
Sci Rep ; 12(1): 20006, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36411310

ABSTRACT

The transcriptional repressor REV-ERB-α, encoded by Nuclear Receptor Subfamily 1 Group D Member 1 (Nr1d1), has been considered to play an essential role in the skeletal muscle oxidative capacity adaptation and muscle mass control. Also, this molecule regulates autophagy via the repression of autophagy-related genes both in skeletal muscle and brain regions. Classically, training programs based on endurance or strength characteristics enhance skeletal muscle mass content and/or oxidative capacity, leading to autophagy activation in several tissues. Thus, it seems that REV-ERB-α regulates similar responses induced by exercise. However, how this molecule responds to different exercise models/intensities in different tissues is still unclear. Therefore, the main aim was to characterize the responses of REV-ERB-α and autophagy-related genes to different exercise protocols (endurance/interval run/strength) in distinct tissues (gastrocnemius, soleus and hippocampus). Since REV-ERB-α presents a circadian rhythm, the analyses were performed in a time-course manner. The endurance and strength groups attenuated REV-ERB-α transcriptional response during the time course in gastrocnemius and soleus. Conversely, the interval group enhanced the Nr1d1 expression in the hippocampus. All protocols downregulated the REV-ERB-α protein levels in gastrocnemius following the exercise session with concomitant nuclear exclusion. The major autophagy-related genes presented downregulation after the exercise session in all analyzed tissues. Altogether, these results highlight that REV-ERB-α is extremely sensitive to physical exercise stimuli, including different models and intensities in skeletal muscle and the hippocampus.


Subject(s)
Circadian Rhythm , Exercise , Circadian Rhythm/genetics , Autophagy/genetics , Muscle, Skeletal , Hippocampus
9.
J Cell Biochem ; 123(12): 2079-2092, 2022 12.
Article in English | MEDLINE | ID: mdl-36191155

ABSTRACT

Prostate cancer (PCa) represents the second most common cancer in men and affects millions worldwide. Chemotherapy is a common treatment for PCa but the development of resistance is often a problem during therapy. NRF2 (nuclear factor erythroid 2-related factor 2) is one of the major transcription factors regulating antioxidant enzymes and is also involved with drug efflux and detoxification. Cancer cells submitted to chemotherapy often promote NRF2 activation to benefit themselves with the cytoprotective response. Here, we found that DU145 and PC3 PCa cell lines have different responses regarding NRF2 activation, when subjected to arsenite-induced stress, even in the presence of MG132, a proteasome inhibitor. We also observed that only in PC3 cells treated with arsenite, NRF2 was able to translocate to the nucleus. To better understand the role of NRF2 in promoting chemoresistance, we performed CRISPR knockout of NRF2 (NKO) in DU145 and PC3 cells. The effectiveness of the knockout was confirmed through the downregulation of NRF2 targets (p < 0.0001). PC3 NKO cells exhibited higher levels of reactive oxygen species (ROS) compared to wild-type cells (p < 0.0001), while this alteration was not observed in DU145 NKO cells. Despite no modulation in ROS content, a lower IC50 value (p < 0.05) for cisplatin was observed in DU145 NKO cells, suggesting that the knockout sensitized the cells to the treatment. Besides, the treatment of DU145 NKO with cisplatin led cells to apoptosis as observed by the increased levels of PARP1 cleavage (p < 0.05), possibly triggered by increased DNA damage. Reduced levels of KU70 and phospho-CHK2 (p < 0.05) were also detected. The data presented here support that NRF2 is a mediator of oncogenesis and could be a potential target to sensitize PCa cells to chemotherapy, reinforcing the importance of knowing the specific genetic and biochemical characteristics of the cancer cells for a more effective approach against cancer.


Subject(s)
Arsenites , Prostatic Neoplasms , Male , Humans , Cisplatin/pharmacology , Cisplatin/therapeutic use , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Arsenites/pharmacology , Arsenites/therapeutic use , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Apoptosis , Cell Line, Tumor
10.
Front Immunol ; 13: 953272, 2022.
Article in English | MEDLINE | ID: mdl-36311768

ABSTRACT

Interleukin 6 (IL-6) acts as a pro and anti-inflammatory cytokine, has an intense correlation with exercise intensity, and activates various pathways such as autophagy and mitochondrial unfolded protein response. Also, IL-6 is interconnected to circadian clock-related inflammation and can be suppressed by the nuclear receptor subfamily 1, group D, member 1 (Nr1d1, protein product REV-ERBα). Since IL-6 is linked to physical exercise-modulated metabolic pathways such as autophagy and mitochondrial metabolism, we investigated the relationship of IL-6 with REV-ERBα in the adaptations of these molecular pathways in response to acute intense physical exercise in skeletal muscle. The present study was divided into three experiments. In the first one, wild-type (WT) and IL-6 knockout (IL-6 KO) mice were divided into three groups: Basal time (Basal; sacrificed before the acute exercise), 1 hour (1hr post-Ex; sacrificed 1 hour after the acute exercise), and 3 hours (3hr post-Ex; sacrificed 3 hours after the acute exercise). In the second experiment, C2C12 cells received IL-6 physiological concentrations or REV-ERBα agonist, SR9009. In the last experiment, WT mice received SR9009 injections. After the protocols, the gastrocnemius muscle or the cells were collected for reverse transcription-quantitative polymerase chain reaction (RTq-PCR) and immunoblotting techniques. In summary, the downregulation of REV-ERBα, autophagic flux, and most mitochondrial genes was verified in the IL-6 KO mice independent of exercise. The WT and IL-6 KO treated with SR9009 showed an upregulation of autophagic genes. C2C12 cells receiving IL-6 did not modulate the Nr1d1 mRNA levels but upregulated the expression of some mitochondrial genes. However, when treated with SR9009, IL-6 and mitochondrial gene expression were upregulated in C2C12 cells. The autophagic flux in C2C12 suggest the participation of REV-ERBα protein in the IL-6-induced autophagy. In conclusion, the present study verified that the adaptations required through physical exercise (increases in mitochondrial content and improvement of autophagy machinery) might be intermediated by an interaction between IL-6 and REVERBα.


Subject(s)
Interleukin-6 , Nuclear Receptor Subfamily 1, Group D, Member 1 , Animals , Mice , Autophagy/genetics , Biomarkers , Gene Products, rev , Interleukin-6/genetics , Interleukin-6/metabolism , Muscle, Skeletal/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
11.
J Cell Physiol ; 237(11): 4262-4274, 2022 11.
Article in English | MEDLINE | ID: mdl-36125908

ABSTRACT

Obesity is a worldwide health problem and is directly associated with insulin resistance and type 2 diabetes. The liver is an important organ for the control of healthy glycemic levels, since insulin resistance in this organ reduces phosphorylation of forkhead box protein 1 (FOXO1) protein, leading to higher hepatic glucose production (HGP) and fasting hyperglycemia. Aerobic physical training is known as an important strategy in increasing the insulin action in the liver by increasing FOXO1 phosphorylation and reducing gluconeogenesis. However, little is known about the effects of strength training in this context. This study aimed to investigate the effects of short-term strength training on hepatic insulin sensitivity and glycogen synthase kinase-3ß (GSK3ß) and FOXO1 phosphorylation in obese (OB) mice. To achieve this goal, OB Swiss mice performed the strength training protocol (one daily session for 15 days). Short-term strength training increased the phosphorylation of protein kinase B and GSK3ß in the liver after insulin stimulus and improved the control of HGP during the pyruvate tolerance test. On the other hand, sedentary OB animals reduced FOXO1 phosphorylation and increased the levels of nuclear FOXO1 in the liver, increasing the phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) content. The bioinformatics analysis also showed positive correlations between hepatic FOXO1 levels and gluconeogenic genes, reinforcing our findings. However, strength-trained animals reverted to this scenario, regardless of body adiposity changes. In conclusion, short-term strength training is an efficient strategy to enhance the insulin action in the liver of OB mice, contributing to glycemic control by reducing the activity of hepatic FOXO1 and lowering PEPCK and G6Pase contents.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Resistance Training , Mice , Humans , Animals , Mice, Obese , Insulin Resistance/genetics , Diabetes Mellitus, Type 2/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Liver/metabolism , Insulin/metabolism , Obesity/genetics , Obesity/metabolism , Phosphoenolpyruvate Carboxykinase (ATP)/metabolism , Mice, Inbred C57BL
12.
Nutrition ; 93: 111430, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34479044

ABSTRACT

OBJECTIVES: Based on taurine's beneficial roles in metabolic diseases in rodents and obese individuals, we investigated the effects of taurine supplementation on adipose tissue using transcriptome analysis, 3T3-L1 adipocytes, and subcutaneous white adipose tissue (scWAT) of obese women. METHODS: First, we applied bioinformatics analysis to evaluate the effect of the taurine synthesis pathway on the adipose tissue of several BXD mice strains. After that, using 3T3-L1 adipocytes, we investigated the effects of different taurine doses in proteins related to insulin signaling, lipid oxidation, and mitochondrial function. Finally, we evaluated the effects of taurine supplementation (3 grams, 8 wk) on the same proteins in the scWAT of obese women. RESULTS: The transcriptome analysis showed that the taurine biosynthesis pathway was positively associated with insulin signaling and mitochondrial metabolism in the scWAT of BXD mice. The experiments using 3T3-L1 cells highlighted that the taurine dosage has an essential function in taurine synthesis, insulin, and mitochondrial markers. In contrast, the 8-wk taurine administration did not change the basal insulin, proteins of the taurine synthesis or insulin pathways, lipid oxidation, or mitochondrial metabolism in the scWAT of obese women. CONCLUSIONS: For the first time, to our knowledge, we showed that supplementation with 3 g of taurine for 8 wk promoted no effect in the insulin signaling pathway in the scWAT of obese women. These findings bring new perspectives to investigate different taurine doses and the intervention period for human studies owing to the potential antiobesity activity of taurine.


Subject(s)
Insulin , Taurine , 3T3-L1 Cells , Adipocytes/metabolism , Animals , Insulin/metabolism , Mice , Mitochondria , Obesity/drug therapy , Obesity/metabolism , Signal Transduction , Taurine/pharmacology
13.
Life Sci ; 285: 119988, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34592238

ABSTRACT

Strategies capable of attenuating TLR4 can attenuate metabolic processes such as inflammation, endoplasmic reticulum (ER) stress, and apoptosis in the body. Physical exercise has been a cornerstone in suppressing inflammation and dysmetabolic outcomes caused by TRL4 activation. Thus, the present study aimed to evaluate the effects of a chronic physical exercise protocol on the TLR4 expression and its repercussion in the inflammation, ER stress, and apoptosis pathways in mice hearts. Echocardiogram, RT-qPCR, immunoblotting, and histological techniques were used to evaluate the left ventricle of wild-type (WT) and Tlr4 knockout (TLR4 KO) mice submitted to a 4-week physical exercise protocol. Moreover, we performed a bioinformatics analysis to expand the relationship of Tlr4 mRNA in the heart with inflammation, ER stress, and apoptosis-related genes of several isogenic strains of BXD mice. The TLR4 KO mice had higher energy expenditure and heart rate in the control state but lower activation of apoptosis and ER stress pathways. The bioinformatics analysis reinforced these data. In the exercised state, the WT mice improved performance and cardiac function. However, these responses were blunted in the KO group. In conclusion, TLR4 has an essential role in the inhibition of apoptosis and ER stress pathways, as well as in the training-induced beneficial adaptations.


Subject(s)
Apoptosis/genetics , Endoplasmic Reticulum Stress/genetics , Energy Metabolism/genetics , Heart Ventricles , Physical Conditioning, Animal , Toll-Like Receptor 4/genetics , Ventricular Function , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Echocardiography , Gene Deletion , Glycogen/metabolism , Heart Rate , Inflammation/genetics , Inflammation/pathology , Mice , Mice, Knockout , RNA, Messenger/metabolism
14.
Sci Rep ; 11(1): 18015, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34504172

ABSTRACT

Obesity and high-fat diet (HFD) consumption result in hypothalamic inflammation and metabolic dysfunction. While the TLR4 activation by dietary fats is a well-characterized pathway involved in the neuronal and glial inflammation, the role of its accessory proteins in diet-induced hypothalamic inflammation remains unknown. Here, we demonstrate that the knockdown of TLR4-interactor with leucine-rich repeats (Tril), a functional component of TLR4, resulted in reduced hypothalamic inflammation, increased whole-body energy expenditure, improved the systemic glucose tolerance and protection from diet-induced obesity. The POMC-specific knockdown of Tril resulted in decreased body fat, decreased white adipose tissue inflammation and a trend toward increased leptin signaling in POMC neurons. Thus, Tril was identified as a new component of the complex mechanisms that promote hypothalamic dysfunction in experimental obesity and its inhibition in the hypothalamus may represent a novel target for obesity treatment.


Subject(s)
Intercellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Neurons/metabolism , Obesity/etiology , Pro-Opiomelanocortin/genetics , Toll-Like Receptor 4/genetics , Adipose Tissue/metabolism , Adipose Tissue/pathology , Animals , Diet, High-Fat/adverse effects , Energy Metabolism/genetics , Gene Expression Regulation , Glucose Tolerance Test , Hypothalamus/pathology , Inflammation , Intercellular Signaling Peptides and Proteins/deficiency , Male , Membrane Proteins/deficiency , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/pathology , Obesity/metabolism , Obesity/pathology , Pro-Opiomelanocortin/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , Toll-Like Receptor 4/metabolism
15.
Front Immunol ; 12: 702025, 2021.
Article in English | MEDLINE | ID: mdl-34234788

ABSTRACT

Physical exercise is considered a fundamental strategy in improving insulin sensitivity and glucose uptake in skeletal muscle. However, the molecular mechanisms underlying this regulation, primarily on skeletal muscle glucose uptake, are not fully understood. Recent evidence has shown that Rho-kinase (ROCK) isoforms play a pivotal role in regulating skeletal muscle glucose uptake and systemic glucose homeostasis. The current study evaluated the effect of physical exercise on ROCK2 signaling in skeletal muscle of insulin-resistant obese animals. Physiological (ITT) and molecular analysis (immunoblotting, and RT-qPCR) were performed. The contents of RhoA and ROCK2 protein were decreased in skeletal muscle of obese mice compared to control mice but were restored to normal levels in response to physical exercise. The exercised animals also showed higher phosphorylation of insulin receptor substrate 1 (IRS1 Serine 632/635) and protein kinase B (Akt) in the skeletal muscle. However, phosphatase and tensin homolog (PTEN) and protein-tyrosine phosphatase-1B (PTP-1B), both inhibitory regulators for insulin action, were increased in obesity but decreased after exercise. The impact of ROCK2 action on muscle insulin signaling is further underscored by the fact that impaired IRS1 and Akt phosphorylation caused by palmitate in C2C12 myotubes was entirely restored by ROCK2 overexpression. These results suggest that the exercise-induced upregulation of RhoA-ROCK2 signaling in skeletal muscle is associated with increased systemic insulin sensitivity in obese mice and further implicate that muscle ROCK2 could be a potential target for treating obesity-linked metabolic disorders.


Subject(s)
Insulin Resistance/physiology , Insulin/metabolism , Mice, Obese/metabolism , Muscle, Skeletal/metabolism , Physical Conditioning, Animal/physiology , rho-Associated Kinases/metabolism , Animals , Glucose/metabolism , Mice , Mice, Obese/physiology , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/physiopathology , Obesity/metabolism , Obesity/physiopathology , Signal Transduction/physiology
16.
Brain Behav Immun ; 95: 462-476, 2021 07.
Article in English | MEDLINE | ID: mdl-33964434

ABSTRACT

Physically active individuals are less likely to develop chronic pain, and physical exercise is an established strategy to control inflammatory diseases. Here, we hypothesized that 1) peripheral pro-inflammatory macrophages phenotype contribute to predisposition of the musculoskeletal to chronic pain, and that 2) activation of PPARγ receptors, modulation of macrophage phenotypes and cytokines through physical exercise would prevent persistent muscle pain. We tested these hypotheses using swimming exercise, pharmacological and immunochemical techniques in a rodent model of persistent muscle hyperalgesia. Swimming prevented the persistent mechanical muscle hyperalgesia most likely through activation of PPARγ receptors, as well as activation of PPARγ receptors by 15d-PGJ2 and depletion of muscle macrophages in sedentary animals. Acute and persistent muscle hyperalgesia were characterized by an increase in pro-inflammatory macrophages phenotype, and swimming and the 15d-PGJ2 prevented this increase and increased anti-inflammatory macrophages phenotype. Finally, IL-1ß concentration in muscle increased in the acute phase, which was also prevented by PPARγ receptors activation through swimming. Besides, swimming increased muscle concentration of IL-10 in both acute and chronic phases, but only in the persistent phase through PPARγ receptors. Our findings suggest physical exercise activates PPARγ receptors and increases anti-inflammatory responses in the muscle tissue by modulating macrophages phenotypes and cytokines, thereby preventing the establishment of persistent muscle hyperalgesia. These results further highlight the potential of physical exercise to prevent chronic muscle pain.


Subject(s)
Hyperalgesia , Macrophages , Muscles/metabolism , PPAR gamma , Physical Conditioning, Animal , Animals , Cytokines , Male , Mice , Phenotype , Prostaglandin D2/analogs & derivatives
17.
Cytokine ; 142: 155494, 2021 06.
Article in English | MEDLINE | ID: mdl-33765652

ABSTRACT

Interleukin-6 (IL-6) is associated with pathological cardiac hypertrophy and can be dramatically increased in serum after an acute strenuous exercise session. However, IL-6 is also associated with the increased production and release of anti-inflammatory cytokines and the inhibition of tumor necrosis factor-alpha (TNF-α) after chronic moderate exercise. To elucidate the relevance of IL-6 in inflammatory and hypertrophic signaling in the heart in response to an acute strenuous exercise session, we combined transcriptome analysis using the BXD mice database and exercised IL-6 knockout mice (IL-6KO). Bioinformatic analysis demonstrated that low or high-levels of Il6 mRNA in the heart did not change the inflammation- and hypertrophy-related genes in BXD mice strains. On the other hand, bioinformatic analysis revealed a strong positive correlation between Il6 gene expression in skeletal muscle with inflammation-related genes in cardiac tissue in several BXD mouse strains, suggesting that skeletal muscle-derived IL-6 could alter the heart's intracellular signals, particularly the inflammatory signaling. As expected, an acute strenuous exercise session increased IL-6 levels in wild-type, but not in IL-6KO mice. Despite not showing morphofunctional differences in the heart at rest, the IL-6KO group presented a reduction in physical performance and attenuated IL-6, TNF-α, and IL-1beta kinetics in serum, as well as lower p38MAPK phosphorylation, Ampkalpha expression, and higher Acta1 and Tnf gene expressions in the left ventricle in the basal condition. In response to strenuous exercise, IL-6 ablation was linked to a reduction in the pro-inflammatory response and higher activation of classical physiological cardiac hypertrophy proteins.


Subject(s)
Biomarkers/metabolism , Heart/physiopathology , Inflammation/pathology , Interleukin-6/deficiency , Physical Conditioning, Animal , Adenylate Kinase/metabolism , Animals , Biomarkers/blood , Cardiomegaly/blood , Cardiomegaly/genetics , Electrocardiography , Gene Expression Profiling , Gene Expression Regulation , Heart/diagnostic imaging , Interleukin-6/genetics , Interleukin-6/metabolism , Mice, Inbred C57BL , Mice, Knockout , Muscle, Skeletal/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rest , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
18.
J Endocrinol ; 247(2): 127-138, 2020 11.
Article in English | MEDLINE | ID: mdl-32805709

ABSTRACT

Obesity is linked to a reduction in the control of hepatic glucose production, which is the primary mechanism related to fasting hyperglycemia and the development of type 2 diabetes mellitus (T2DM). The main system involved in hepatic gluconeogenesis synthesis is controlled by pyruvate carboxylase (PC), which increases in obesity conditions. Recently, we showed that short-term strength training is an important tool against obesity-induced hyperglycemia. As aerobic exercise can reduce the hepatic PC content of obese animals, we hypothesized that strength exercise can also decrease this gluconeogenic enzyme. Therefore, this study investigated whether the metabolic benefits promoted by short-term strength training are related to changes in hepatic PC content. Swiss mice were divided into three groups: lean control (Ctl), obese sedentary (ObS), and obese short-term strength training (STST). The STST protocol was performed through one session/day for 15 days. The obese exercised animals had reduced hyperglycemia and insulin resistance. These results were related to better control of hepatic glucose production and hepatic insulin sensitivity. Our bioinformatics analysis showed that hepatic PC mRNA levels have positive correlations with glucose levels and adiposity, and negative correlations with locomotor activity and muscle mass. We also found that hepatic mRNA levels are related to lipogenic markers in the liver. Finally, we observed that the obese animals had an increased hepatic PC level; however, STST was efficient in reducing its amount. In conclusion, we provide insights into new biomolecular mechanisms by showing how STST is an efficient tool against obesity-related hyperglycemia and T2DM, even without body weight changes.


Subject(s)
Adiposity/physiology , Glucose/metabolism , Liver/metabolism , Obesity/blood , Obesity/metabolism , Animals , Body Mass Index , Computational Biology , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Immunoblotting , Insulin/blood , Insulin Resistance/physiology , Male , Mice , Real-Time Polymerase Chain Reaction , Resistance Training
19.
Cytokine ; 130: 155085, 2020 Apr 04.
Article in English | MEDLINE | ID: mdl-32259772

ABSTRACT

BACKGROUND: Based on the crosstalk of inflammation with apoptosis, autophagy, and endoplasmic reticulum (ER) stress, the main objective of this study was to explore the role of interleukin-6 (IL-6) on genes and proteins related to these phenomena in the livers of mice submitted to acute exhaustive exercise. METHODS: Reverse transcription-quantitative polymerase chain reaction and immunoblotting technique were used to evaluate the livers of wild-type (WT) and IL-6 knockout (KO) mice at baseline (BL) and 3 h after the acute exhaustive physical exercise (EE). RESULTS: Compared to the WT at baseline, the IL-6 KO had lower exhaustion velocity, mRNA levels of Mtor, Ulk1, Map1lc3b, and Mapk14, and protein contents of ATG5 and p-p70S6K/p70S6K. For the WT group, the EE decreased glycemia, mRNA levels of Casp3, Mtor, Ulk1, Foxo1a, Mapk14, and Ppargc1a, and protein contents of ATG5 and p-p70S6K/p70S6K, but increased mRNA levels of Sqstm1. For the IL-6 KO group, the EE decreased glycemia, mRNA levels of Casp3 and Foxo1a, and protein contents of pAkt/Akt and Mature/Pro IL-1beta, but increased mRNA levels of Sqstm1, and protein contents of p-AMPK/AMPK. CONCLUSION: The inhibition of the hepatic autophagy markers induced by the acute EE was attenuated in IL-6 KO mice, highlighting a new function of this cytokine.

20.
J Gerontol A Biol Sci Med Sci ; 75(12): 2258-2261, 2020 11 13.
Article in English | MEDLINE | ID: mdl-32173728

ABSTRACT

The impairment of the mitochondrial functions is a hallmark of aging. During aging, there is a downregulation of two mechanisms strictly associated with mitochondrial integrity, including the mitonuclear imbalance (eg, imbalance in mitochondrial- versus nuclear-encoded mitochondrial proteins) and the mitochondrial unfolded protein response (UPRmt). Here, we evaluated the effects of aerobic exercise in the mitonuclear imbalance and UPRmt markers in the skeletal muscle of old mice. We combined the physiological tests, molecular and bioinformatic analyzes to evaluate the effects of 4 weeks of aerobic exercise training on mitonuclear imbalance and UPRmt markers in the skeletal muscle of young (2 months) and aged (24 months) C57BL/6J mice. Initially, we found that aging reduced several mitochondrial genes in the gastrocnemius muscle, and it was accompanied by the low levels of UPRmt markers, including Yme1l1 and Clpp mRNA. As expected, physical training improved the whole-body metabolism and physical performance of aged mice. The aerobic exercise increased key proteins involved in the mitochondrial biogenesis/functions (VDAC and SIRT1) along with mitochondrial-encoded genes (mtNd1, mtCytB, and mtD-Loop) in the skeletal muscle of old mice. Interestingly, aerobic exercise induced the mitonuclear imbalance, increasing MTCO1/ATP5a ratio and UPRmt markers in the skeletal muscle, including HSP60, Lonp1, and Yme1L1 protein levels in the gastrocnemius muscle of aged mice. These data demonstrate that aerobic exercise training induced mitonuclear imbalance and UPRmt in the skeletal muscle during aging. These phenomena could be involved in the improvement of the mitochondrial metabolism and oxidative capacity in aged individuals.


Subject(s)
Aging/physiology , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Physical Conditioning, Animal/physiology , Unfolded Protein Response/physiology , Animals , Endopeptidase Clp/metabolism , Male , Metalloendopeptidases/metabolism , Mice , Mice, Inbred C57BL , Sirtuin 1/metabolism , Voltage-Dependent Anion Channel 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...