Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798472

ABSTRACT

Comparisons of multiple metazoan genomes have revealed the existence of ancestral linkage groups (ALGs), genomic scaffolds sharing sets of orthologous genes that have been inherited from ancestral animals for hundreds of millions of years (Simakov et al. 2022; Schultz et al. 2023) These ALGs have persisted across major animal taxa including Cnidaria, Deuterostomia, Ecdysozoa and Spiralia. Notwithstanding this general trend of chromosome-scale conservation, ALGs have been obliterated by extensive genome rearrangements in certain groups, most notably including Clitellata (oligochaetes and leeches), a group of easily overlooked invertebrates that is of tremendous ecological, agricultural and economic importance (Charles 2019; Barrett 2016). To further investigate these rearrangements, we have undertaken a comparison of 12 clitellate genomes (including four newly sequenced species) and 11 outgroup representatives. We show that these rearrangements began at the base of the Clitellata (rather than progressing gradually throughout polychaete annelids), that the inter-chromosomal rearrangements continue in several clitellate lineages and that these events have substantially shaped the evolution of the otherwise highly conserved Hox cluster.

2.
Genome Biol Evol ; 16(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38526014

ABSTRACT

To understand the biology of a species, it is often crucial to be able to differentiate males and females. However, many species lack easily identifiable sexually dimorphic traits. In those that possess sex chromosomes, molecular sexing offers a good alternative, and molecular sexing assays can be developed through the comparison of male and female genomic sequences. However, in many nonmodel species, sex chromosomes are poorly differentiated, and identifying sex-linked sequences and developing sexing assays can be challenging. In this study, we highlight a simple transcriptome-based procedure for the detection of sex-linked markers suitable for the development of sexing assays that circumvents limitations of more commonly used approaches. We apply it to the spotted snow skink Carinascincus ocellatus, a viviparous lizard with homomorphic XY chromosomes that has environmentally induced sex reversal. With transcriptomes from three males and three females alone, we identify thousands of putative Y-linked sequences. We confirm linkage through alignment of assembled transcripts to a distantly related lizard genome and readily design multiple single locus polymerase chain reaction primers to sex C. ocellatus and related species. Our approach also facilitates valuable comparisons of sex determining systems on a broad taxonomic scale.


Subject(s)
Sex Chromosomes , Transcriptome , Female , Male , Humans , Sex Chromosomes/genetics , Genome , Genomics
3.
Genome Res ; 34(3): 498-513, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38508693

ABSTRACT

Hydractinia is a colonial marine hydroid that shows remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of two Hydractinia species, Hydractinia symbiolongicarpus and Hydractinia echinata, placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult male H. symbiolongicarpus and identified cell-type markers for all major cell types, including key i-cell markers. Orthology analyses based on the markers revealed that Hydractinia's i-cells are highly enriched in genes that are widely shared amongst animals, a striking finding given that Hydractinia has a higher proportion of phylum-specific genes than any of the other 41 animals in our orthology analysis. These results indicate that Hydractinia's stem cells and early progenitor cells may use a toolkit shared with all animals, making it a promising model organism for future exploration of stem cell biology and regenerative medicine. The genomic and transcriptomic resources for Hydractinia presented here will enable further studies of their regenerative capacity, colonial morphology, and ability to distinguish self from nonself.


Subject(s)
Genome , Hydrozoa , Animals , Hydrozoa/genetics , Evolution, Molecular , Transcriptome , Stem Cells/metabolism , Male , Phylogeny , Single-Cell Analysis/methods
4.
Nature ; 627(8005): 811-820, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38262590

ABSTRACT

As the only surviving lineages of jawless fishes, hagfishes and lampreys provide a crucial window into early vertebrate evolution1-3. Here we investigate the complex history, timing and functional role of genome-wide duplications4-7 and programmed DNA elimination8,9 in vertebrates in the light of a chromosome-scale genome sequence for the brown hagfish Eptatretus atami. Combining evidence from syntenic and phylogenetic analyses, we establish a comprehensive picture of vertebrate genome evolution, including an auto-tetraploidization (1RV) that predates the early Cambrian cyclostome-gnathostome split, followed by a mid-late Cambrian allo-tetraploidization (2RJV) in gnathostomes and a prolonged Cambrian-Ordovician hexaploidization (2RCY) in cyclostomes. Subsequently, hagfishes underwent extensive genomic changes, with chromosomal fusions accompanied by the loss of genes that are essential for organ systems (for example, genes involved in the development of eyes and in the proliferation of osteoclasts); these changes account, in part, for the simplification of the hagfish body plan1,2. Finally, we characterize programmed DNA elimination in hagfish, identifying protein-coding genes and repetitive elements that are deleted from somatic cell lineages during early development. The elimination of these germline-specific genes provides a mechanism for resolving genetic conflict between soma and germline by repressing germline and pluripotency functions, paralleling findings in lampreys10,11. Reconstruction of the early genomic history of vertebrates provides a framework for further investigations of the evolution of cyclostomes and jawed vertebrates.


Subject(s)
Evolution, Molecular , Hagfishes , Vertebrates , Animals , Hagfishes/anatomy & histology , Hagfishes/cytology , Hagfishes/embryology , Hagfishes/genetics , Lampreys/genetics , Phylogeny , Vertebrates/genetics , Synteny , Polyploidy , Cell Lineage
5.
Sci Data ; 11(1): 40, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38184621

ABSTRACT

Coleoid cephalopods possess numerous complex, species-specific morphological and behavioural adaptations, e.g., a uniquely structured nervous system that is the largest among the invertebrates. The Hawaiian bobtail squid (Euprymna scolopes) is one of the most established cephalopod species. With its recent publication of the chromosomal-scale genome assembly and regulatory genomic data, it also emerges as a key model for cephalopod gene regulation and evolution. However, the latest genome assembly has been lacking a native gene model set. Our manuscript describes the generation of new long-read transcriptomic data and, made using this combined with a plethora of publicly available transcriptomic and protein sequence data, a new reference annotation for E. scolopes.


Subject(s)
Decapodiformes , Gene Expression Profiling , Animals , Amino Acid Sequence , Decapodiformes/genetics , Genomics , Hawaii
6.
Nat Commun ; 14(1): 8270, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38092765

ABSTRACT

There is currently little information about the evolution of gene clusters, genome architectures and karyotypes in early branching animals. Slowly evolving anthozoan cnidarians can be particularly informative about the evolution of these genome features. Here we report chromosome-level genome assemblies of two related anthozoans, the sea anemones Nematostella vectensis and Scolanthus callimorphus. We find a robust set of 15 chromosomes with a clear one-to-one correspondence between the two species. Both genomes show chromosomal conservation, allowing us to reconstruct ancestral cnidarian and metazoan chromosomal blocks, consisting of at least 19 and 16 ancestral linkage groups, respectively. We show that, in contrast to Bilateria, the Hox and NK clusters of investigated cnidarians are largely disintegrated, despite the presence of staggered hox/gbx expression in Nematostella. This loss of microsynteny conservation may be facilitated by shorter distances between cis-regulatory sequences and their cognate transcriptional start sites. We find no clear evidence for topologically associated domains, suggesting fundamental differences in long-range gene regulation compared to vertebrates. These data suggest that large sets of ancestral metazoan genes have been retained in ancestral linkage groups of some extant lineages; yet, higher order gene regulation with associated 3D architecture may have evolved only after the cnidarian-bilaterian split.


Subject(s)
Sea Anemones , Animals , Sea Anemones/genetics , Phylogeny , Synteny/genetics , Gene Expression Regulation , Genome/genetics
7.
bioRxiv ; 2023 Aug 27.
Article in English | MEDLINE | ID: mdl-37786714

ABSTRACT

Hydractinia is a colonial marine hydroid that exhibits remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of two Hydractinia species, H. symbiolongicarpus and H. echinata, placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult male H. symbiolongicarpus and identified cell type markers for all major cell types, including key i-cell markers. Orthology analyses based on the markers revealed that Hydractinia's i-cells are highly enriched in genes that are widely shared amongst animals, a striking finding given that Hydractinia has a higher proportion of phylum-specific genes than any of the other 41 animals in our orthology analysis. These results indicate that Hydractinia's stem cells and early progenitor cells may use a toolkit shared with all animals, making it a promising model organism for future exploration of stem cell biology and regenerative medicine. The genomic and transcriptomic resources for Hydractinia presented here will enable further studies of their regenerative capacity, colonial morphology, and ability to distinguish self from non-self.

8.
Brief Funct Genomics ; 22(6): 533-542, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37815133

ABSTRACT

Information on how 3D genome topology emerged in animal evolution, how stable it is during development, its role in the evolution of phenotypic novelties and how exactly it affects gene expression is highly debated. So far, data to address these questions are lacking with the exception of a few key model species. Several gene regulatory mechanisms have been proposed, including scenarios where genome topology has little to no impact on gene expression, and vice versa. The ancient and diverse clade of spiralians may provide a crucial testing ground for such mechanisms. Sprialians have followed distinct evolutionary trajectories, with some clades experiencing genome expansions and/or large-scale genome rearrangements, and others undergoing genome contraction, substantially impacting their size and organisation. These changes have been associated with many phenotypic innovations in this clade. In this review, we describe how emerging genome topology data, along with functional tools, allow for testing these scenarios and discuss their predicted outcomes.


Subject(s)
Evolution, Molecular , Animals
9.
G3 (Bethesda) ; 13(12)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37850903

ABSTRACT

Cephalopods are emerging animal models and include iconic species for studying the link between genomic innovations and physiological and behavioral complexities. Coleoid cephalopods possess the largest nervous system among invertebrates, both for cell counts and brain-to-body ratio. Octopus vulgaris has been at the center of a long-standing tradition of research into diverse aspects of cephalopod biology, including behavioral and neural plasticity, learning and memory recall, regeneration, and sophisticated cognition. However, no chromosome-scale genome assembly was available for O. vulgaris to aid in functional studies. To fill this gap, we sequenced and assembled a chromosome-scale genome of the common octopus, O. vulgaris. The final assembly spans 2.8 billion basepairs, 99.34% of which are in 30 chromosome-scale scaffolds. Hi-C heatmaps support a karyotype of 1n = 30 chromosomes. Comparisons with other octopus species' genomes show a conserved octopus karyotype and a pattern of local genome rearrangements between species. This new chromosome-scale genome of O. vulgaris will further facilitate research in all aspects of cephalopod biology, including various forms of plasticity and the neural machinery underlying sophisticated cognition, as well as an understanding of cephalopod evolution.


Subject(s)
Octopodiformes , Animals , Octopodiformes/genetics , Genome , Genomics , Nervous System , Chromosomes/genetics
10.
iScience ; 26(7): 107091, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37426346

ABSTRACT

Light organs (LO) with symbiotic bioluminescent bacteria are hallmarks of many bobtail squid species. These organs possess structural and functional features to modulate light, analogous to those found in coleoid eyes. Previous studies identified four transcription factors and modulators (SIX, EYA, PAX6, DAC) associated with both eyes and light organ development, suggesting co-option of a highly conserved gene regulatory network. Using available topological, open chromatin, and transcriptomic data, we explore the regulatory landscape around the four transcription factors as well as genes associated with LO and shared LO/eye expression. This analysis revealed several closely associated and putatively co-regulated genes. Comparative genomic analyses identified distinct evolutionary origins of these putative regulatory associations, with the DAC locus showing a unique topological and evolutionarily recent organization. We discuss different scenarios of modifications to genome topology and how these changes may have contributed to the evolutionary emergence of the light organ.

11.
G3 (Bethesda) ; 2023 May 18.
Article in English | MEDLINE | ID: mdl-37294738

ABSTRACT

Hydractinia symbiolongicarpus is a pioneering model organism for stem cell biology, being one of only a few animals with adult pluripotent stem cells (known as i-cells). However, the unavailability of a chromosome-level genome assembly has hindered a comprehensive understanding of global gene regulatory mechanisms underlying the function and evolution of i-cells. Here, we report the first chromosome-level genome assembly of H. symbiolongicarpus (HSymV2.0) using PacBio HiFi long-read sequencing and Hi-C scaffolding. The final assembly is 483 Mb in total length with 15 chromosomes representing 99.8% of the assembly. Repetitive sequences were found to account for 296 Mb (61%) of the total genome; we provide evidence for at least two periods of repeat expansion in the past. A total of 25,825 protein-coding genes were predicted in this assembly, which include 93.1% of the metazoan Benchmarking Universal Single-Copy Orthologs (BUSCO) gene set. 92.8% (23,971 genes) of the predicted proteins were functionally annotated. The H. symbiolongicarpus genome showed a high degree of macrosynteny conservation with the Hydra vulgaris genome. This chromosome-level genome assembly of H. symbiolongicarpus will be an invaluable resource for the research community that enhances broad biological studies on this unique model organism.

12.
Integr Comp Biol ; 63(6): 1226-1239, 2023 Dec 29.
Article in English | MEDLINE | ID: mdl-37370232

ABSTRACT

Few animal groups can claim the level of wonder that cephalopods instill in the minds of researchers and the general public. Much of cephalopod biology, however, remains unexplored: the largest invertebrate brain, difficult husbandry conditions, and complex (meta-)genomes, among many other things, have hindered progress in addressing key questions. However, recent technological advancements in sequencing, imaging, and genetic manipulation have opened new avenues for exploring the biology of these extraordinary animals. The cephalopod molecular biology community is thus experiencing a large influx of researchers, emerging from different fields, accelerating the pace of research in this clade. In the first post-pandemic event at the Cephalopod International Advisory Council (CIAC) conference in April 2022, over 40 participants from all over the world met and discussed key challenges and perspectives for current cephalopod molecular biology and evolution. Our particular focus was on the fields of comparative and regulatory genomics, gene manipulation, single-cell transcriptomics, metagenomics, and microbial interactions. This article is a result of this joint effort, summarizing the latest insights from these emerging fields, their bottlenecks, and potential solutions. The article highlights the interdisciplinary nature of the cephalopod-omics community and provides an emphasis on continuous consolidation of efforts and collaboration in this rapidly evolving field.


Subject(s)
Cephalopoda , Animals , Genomics/methods , Genome , Gene Expression Profiling , Brain
13.
Nature ; 618(7963): 110-117, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37198475

ABSTRACT

A central question in evolutionary biology is whether sponges or ctenophores (comb jellies) are the sister group to all other animals. These alternative phylogenetic hypotheses imply different scenarios for the evolution of complex neural systems and other animal-specific traits1-6. Conventional phylogenetic approaches based on morphological characters and increasingly extensive gene sequence collections have not been able to definitively answer this question7-11. Here we develop chromosome-scale gene linkage, also known as synteny, as a phylogenetic character for resolving this question12. We report new chromosome-scale genomes for a ctenophore and two marine sponges, and for three unicellular relatives of animals (a choanoflagellate, a filasterean amoeba and an ichthyosporean) that serve as outgroups for phylogenetic analysis. We find ancient syntenies that are conserved between animals and their close unicellular relatives. Ctenophores and unicellular eukaryotes share ancestral metazoan patterns, whereas sponges, bilaterians, and cnidarians share derived chromosomal rearrangements. Conserved syntenic characters unite sponges with bilaterians, cnidarians, and placozoans in a monophyletic clade to the exclusion of ctenophores, placing ctenophores as the sister group to all other animals. The patterns of synteny shared by sponges, bilaterians, and cnidarians are the result of rare and irreversible chromosome fusion-and-mixing events that provide robust and unambiguous phylogenetic support for the ctenophore-sister hypothesis. These findings provide a new framework for resolving deep, recalcitrant phylogenetic problems and have implications for our understanding of animal evolution.


Subject(s)
Ctenophora , Phylogeny , Animals , Ctenophora/classification , Ctenophora/genetics , Genome/genetics , Porifera/classification , Porifera/genetics , Synteny/genetics
14.
bioRxiv ; 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37131617

ABSTRACT

As the only surviving lineages of jawless fishes, hagfishes and lampreys provide a critical window into early vertebrate evolution. Here, we investigate the complex history, timing, and functional role of genome-wide duplications in vertebrates in the light of a chromosome-scale genome of the brown hagfish Eptatretus atami. Using robust chromosome-scale (paralogon-based) phylogenetic methods, we confirm the monophyly of cyclostomes, document an auto-tetraploidization (1RV) that predated the origin of crown group vertebrates ~517 Mya, and establish the timing of subsequent independent duplications in the gnathostome and cyclostome lineages. Some 1RV gene duplications can be linked to key vertebrate innovations, suggesting that this early genomewide event contributed to the emergence of pan-vertebrate features such as neural crest. The hagfish karyotype is derived by numerous fusions relative to the ancestral cyclostome arrangement preserved by lampreys. These genomic changes were accompanied by the loss of genes essential for organ systems (eyes, osteoclast) that are absent in hagfish, accounting in part for the simplification of the hagfish body plan; other gene family expansions account for hagfishes' capacity to produce slime. Finally, we characterise programmed DNA elimination in somatic cells of hagfish, identifying protein-coding and repetitive elements that are deleted during development. As in lampreys, the elimination of these genes provides a mechanism for resolving genetic conflict between soma and germline by repressing germline/pluripotency functions. Reconstruction of the early genomic history of vertebrates provides a framework for further exploration of vertebrate novelties.

15.
iScience ; 26(3): 106136, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36876129

ABSTRACT

Animal genomes are organized into chromosomes that are remarkably conserved in their gene content, forming distinct evolutionary units (synteny). Using versatile chromosomal modeling, we infer three-dimensional topology of genomes from representative clades spanning the earliest animal diversification. We apply a partitioning approach using interaction spheres to compensate for varying quality of topological data. Using comparative genomics approaches, we test whether syntenic signal at gene pair, local, and whole chromosomal scale is reflected in the reconstructed spatial organization. We identify evolutionarily conserved three-dimensional networks at all syntenic scales revealing novel evolutionarily maintained interactors associated with known conserved local gene linkages (such as hox). We thus present evidence for evolutionary constraints that are associated with three-, rather than just two-, dimensional animal genome organization, which we term spatiosynteny. As more accurate topological data become available, together with validation approaches, spatiosynteny may become relevant in understanding the functionality behind the observed conservation of animal chromosomes.

16.
Genome Res ; 33(2): 283-298, 2023 02.
Article in English | MEDLINE | ID: mdl-36639202

ABSTRACT

The epithelial and interstitial stem cells of the freshwater polyp Hydra are the best-characterized stem cell systems in any cnidarian, providing valuable insight into cell type evolution and the origin of stemness in animals. However, little is known about the transcriptional regulatory mechanisms that determine how these stem cells are maintained and how they give rise to their diverse differentiated progeny. To address such questions, a thorough understanding of transcriptional regulation in Hydra is needed. To this end, we generated extensive new resources for characterizing transcriptional regulation in Hydra, including new genome assemblies for Hydra oligactis and the AEP strain of Hydra vulgaris, an updated whole-animal single-cell RNA-seq atlas, and genome-wide maps of chromatin interactions, chromatin accessibility, sequence conservation, and histone modifications. These data revealed the existence of large kilobase-scale chromatin interaction domains in the Hydra genome that contain transcriptionally coregulated genes. We also uncovered the transcriptomic profiles of two previously molecularly uncharacterized cell types: isorhiza-type nematocytes and somatic gonad ectoderm. Finally, we identified novel candidate regulators of cell type-specific transcription, several of which have likely been conserved at least since the divergence of Hydra and the jellyfish Clytia hemisphaerica more than 400 million years ago.


Subject(s)
Hydra , Animals , Hydra/genetics , Hydra/metabolism , Cell Differentiation , Chromatin/metabolism , Chromosomes , Epigenesis, Genetic
17.
Bioinformatics ; 38(24): 5434-5436, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36269177

ABSTRACT

SUMMARY: Current approaches detect conserved genomic order either at chromosomal (macrosynteny) or at subchromosomal scales (microsynteny). The latter generally requires collinearity and hard thresholds on syntenic region size, thus excluding a major proportion of syntenies with recent expansions or minor rearrangements. 'SYNPHONI' bridges the gap between micro- and macrosynteny detection, providing detailed information on both synteny conservation and transformation throughout the evolutionary history of animal genomes. AVAILABILITY AND IMPLEMENTATION: Source code is freely available at https://github.com/nsmro/SYNPHONI, implemented in Python 3.9. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genomics , Software , Animals , Synteny , Phylogeny , Genome
18.
BMC Biol ; 20(1): 116, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35581640

ABSTRACT

BACKGROUND: Transposable elements (TEs) widely contribute to the evolution of genomes allowing genomic innovations, generating germinal and somatic heterogeneity, and giving birth to long non-coding RNAs (lncRNAs). These features have been associated to the evolution, functioning, and complexity of the nervous system at such a level that somatic retrotransposition of long interspersed element (LINE) L1 has been proposed to be associated to human cognition. Among invertebrates, octopuses are fascinating animals whose nervous system reaches a high level of complexity achieving sophisticated cognitive abilities. The sequencing of the genome of the Octopus bimaculoides revealed a striking expansion of TEs which were proposed to have contributed to the evolution of its complex nervous system. We recently found a similar expansion also in the genome of Octopus vulgaris. However, a specific search for the existence and the transcription of full-length transpositionally competent TEs has not been performed in this genus. RESULTS: Here, we report the identification of LINE elements competent for retrotransposition in Octopus vulgaris and Octopus bimaculoides and show evidence suggesting that they might be transcribed and determine germline and somatic polymorphisms especially in the brain. Transcription and translation measured for one of these elements resulted in specific signals in neurons belonging to areas associated with behavioral plasticity. We also report the transcription of thousands of lncRNAs and the pervasive inclusion of TE fragments in the transcriptomes of both Octopus species, further testifying the crucial activity of TEs in the evolution of the octopus genomes. CONCLUSIONS: The neural transcriptome of the octopus shows the transcription of thousands of putative lncRNAs and of a full-length LINE element belonging to the RTE class. We speculate that a convergent evolutionary process involving retrotransposons activity in the brain has been important for the evolution of sophisticated cognitive abilities in this genus.


Subject(s)
Octopodiformes , RNA, Long Noncoding , Animals , Brain , DNA Transposable Elements , Female , Genome , Octopodiformes/genetics , Pregnancy , RNA, Long Noncoding/genetics , Retroelements/genetics
19.
Nat Commun ; 13(1): 2427, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35508532

ABSTRACT

Cephalopods are known for their large nervous systems, complex behaviors and morphological innovations. To investigate the genomic underpinnings of these features, we assembled the chromosomes of the Boston market squid, Doryteuthis (Loligo) pealeii, and the California two-spot octopus, Octopus bimaculoides, and compared them with those of the Hawaiian bobtail squid, Euprymna scolopes. The genomes of the soft-bodied (coleoid) cephalopods are highly rearranged relative to other extant molluscs, indicating an intense, early burst of genome restructuring. The coleoid genomes feature multi-megabase, tandem arrays of genes associated with brain development and cephalopod-specific innovations. We find that a known coleoid hallmark, extensive A-to-I mRNA editing, displays two fundamentally distinct patterns: one exclusive to the nervous system and concentrated in genic sequences, the other widespread and directed toward repetitive elements. We conclude that coleoid novelty is mediated in part by substantial genome reorganization, gene family expansion, and tissue-dependent mRNA editing.


Subject(s)
Cephalopoda , Animals , Cephalopoda/genetics , Decapodiformes/genetics , Genome/genetics , RNA, Messenger/genetics , Transcriptome/genetics
20.
Nat Commun ; 13(1): 2172, 2022 04 21.
Article in English | MEDLINE | ID: mdl-35449136

ABSTRACT

Coleoid cephalopods (squid, cuttlefish, octopus) have the largest nervous system among invertebrates that together with many lineage-specific morphological traits enables complex behaviors. The genomic basis underlying these innovations remains unknown. Using comparative and functional genomics in the model squid Euprymna scolopes, we reveal the unique genomic, topological, and regulatory organization of cephalopod genomes. We show that coleoid cephalopod genomes have been extensively restructured compared to other animals, leading to the emergence of hundreds of tightly linked and evolutionary unique gene clusters (microsyntenies). Such novel microsyntenies correspond to topological compartments with a distinct regulatory structure and contribute to complex expression patterns. In particular, we identify a set of microsyntenies associated with cephalopod innovations (MACIs) broadly enriched in cephalopod nervous system expression. We posit that the emergence of MACIs was instrumental to cephalopod nervous system evolution and propose that microsyntenic profiling will be central to understanding cephalopod innovations.


Subject(s)
Cephalopoda , Animals , Cephalopoda/genetics , Decapodiformes/genetics , Genome/genetics , Genomics , Invertebrates/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...