Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 98(23): 13114-9, 2001 Nov 06.
Article in English | MEDLINE | ID: mdl-11606752

ABSTRACT

The initiation of DNA replication at replication origins in eukaryotic cells is tightly controlled to ensure that the genome is duplicated only once each cell cycle. We present evidence that in fission yeast, independent regulation of two essential components of the initiation complex, Cdc18 and Cdt1, contributes to the prevention of reinitiation of DNA replication. Cdc18 is negatively controlled by cyclin-dependent kinase (CDK) phosphorylation, but low level expression of a mutant form of Cdc18 lacking CDK phosphorylation sites (Cdc18(CDK)) is not sufficient to induce rereplication. Similar to Cdc18, Cdt1 is expressed periodically in the cell cycle, accumulating in the nucleus in G(1) and declining in G(2). When Cdt1 is expressed constitutively from an ectopic promoter, it accumulates in the nucleus throughout the cell cycle but does not promote reinitiation. However, constitutive expression of Cdt1, together with Cdc18(CDK), is sufficient to induce extra rounds of DNA replication in the absence of mitosis. Significantly greater levels of rereplication can be induced by coexpression of Cdc18(CDK) and a Cdt1 mutant lacking a conserved C-terminal motif. In contrast, uncontrolled DNA replication does not occur when either mutant protein is expressed in the absence of the other. Constitutive expression of wild-type or mutant Cdt1 also leads to an increase in the levels of Cdc18(CDK), possibly as a result of increased protein stability. Our data are consistent with the hypothesis that control of rereplication depends on a redundant mechanism in which negative regulation of Cdt1 functions in parallel with the negative regulation of Cdc18.


Subject(s)
Cell Cycle Proteins/physiology , DNA Replication , DNA, Fungal/biosynthesis , DNA-Binding Proteins/physiology , Fungal Proteins/physiology , Schizosaccharomyces/genetics , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Fluorescent Antibody Technique , Fungal Proteins/metabolism , Phosphorylation , Precipitin Tests , Schizosaccharomyces pombe Proteins , Subcellular Fractions/metabolism
2.
J Biol Chem ; 276(28): 26666-73, 2001 Jul 13.
Article in English | MEDLINE | ID: mdl-11323433

ABSTRACT

The six-subunit origin recognition complex (ORC) was originally identified in the yeast Saccharomyces cerevisiae. Yeast ORC binds specifically to origins of replication and serves as a platform for the assembly of additional initiation factors, such as Cdc6 and the Mcm proteins. Human homologues of all six ORC subunits have been identified by sequence similarity to their yeast counterparts, but little is known about the biochemical characteristics of human ORC (HsORC). We have extracted HsORC from HeLa cell chromatin and probed its subunit composition using specific antibodies. The endogenous HsORC, identified in these experiments, contained homologues of Orc1-Orc5 but lacked a putative homologue of Orc6. By expressing HsORC subunits in insect cells using the baculovirus system, we were able to identify a complex containing all six subunits. To explore the subunit-subunit interactions that are required for the assembly of HsORC, we carried out extensive co-immunoprecipitation experiments with recombinant ORC subunits expressed in different combinations. These studies revealed the following binary interactions: HsOrc2-HsOrc3, HsOrc2-HsOrc4, HsOrc3-HsOrc4, HsOrc2-HsOrc6, and HsOrc3-HsOrc6. HsOrc5 did not form stable binary complexes with any other HsORC subunit but interacted with sub-complexes containing any two of subunits HsOrc2, HsOrc3, or HsOrc4. Complex formation by HsOrc1 required the presence of HsOrc2, HsOrc3, HsOrc4, and HsOrc5 subunits. These results suggest that the subunits HsOrc2, HsOrc3, and HsOrc4 form a core upon which the ordered assembly of HsOrc5 and HsOrc1 takes place. The characterization of HsORC should facilitate the identification of human origins of DNA replication.


Subject(s)
DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , HeLa Cells , Humans , Origin Recognition Complex , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae
3.
Proc Natl Acad Sci U S A ; 95(25): 14634-9, 1998 Dec 08.
Article in English | MEDLINE | ID: mdl-9843941

ABSTRACT

Single-stranded DNA-binding proteins (SSBs) play essential roles in DNA replication, recombination, and repair in bacteria and eukarya. We report here the identification and characterization of the SSB of an archaeon, Methanococcus jannaschii. The M. jannaschii SSB (mjaSSB) has significant amino acid sequence similarity to the eukaryotic SSB, replication protein A (RPA), and contains four tandem repeats of the core single-stranded DNA (ssDNA) binding domain originally defined by structural studies of RPA. Homologous SSBs are encoded by the genomes of other archaeal species, including Methanobacterium thermoautotrophicum and Archaeoglobus fulgidus. The purified mjaSSB binds to ssDNA with high affinity and selectivity. The apparent association constant for binding to ssDNA is similar to that of RPA under comparable experimental conditions, and the affinity for ssDNA exceeds that for double-stranded DNA by at least two orders of magnitude. The binding site size for mjaSSB is approximately 20 nucleotides. Given that RPA is related to mjaSSB at the sequence level and to Escherichia coli SSB at the structural level, we conclude that the SSBs of archaea, eukarya, and bacteria share a common core ssDNA-binding domain. This ssDNA-binding domain was presumably present in the common ancestor to all three major branches of life.


Subject(s)
DNA, Archaeal/metabolism , DNA-Binding Proteins/metabolism , Methanococcus/metabolism , Amino Acid Sequence , DNA-Binding Proteins/genetics , Molecular Sequence Data , Sequence Alignment , Sequence Analysis
5.
Proc Natl Acad Sci U S A ; 87(22): 8692-6, 1990 Nov.
Article in English | MEDLINE | ID: mdl-2174160

ABSTRACT

Replication of plasmid DNA molecules containing the simian virus 40 (SV40) origin of DNA replication has been reconstituted with seven highly purified cellular proteins plus the SV40 large tumor (T) antigen. Initiation of DNA synthesis is absolutely dependent upon T antigen, replication protein A, and the DNA polymerase alpha-primase complex and is stimulated by the catalytic subunit of protein phosphatase 2A. Efficient elongation of nascent chains additionally requires proliferating cell nuclear antigen, replication factor C, DNA topoisomerase I, and DNA polymerase delta. Electron microscopic studies indicate that DNA replication begins at the viral origin and proceeds via intermediates containing two forks that move in opposite directions. These findings indicate that the reconstituted replication reaction has many of the characteristics expected of authentic viral DNA replication.


Subject(s)
RNA, Viral/biosynthesis , Simian virus 40/genetics , Antigens, Polyomavirus Transforming/physiology , Cell-Free System , DNA Replication , In Vitro Techniques , Microscopy, Electron , Proteins/isolation & purification , Proteins/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...