Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 13: 803229, 2022.
Article in English | MEDLINE | ID: mdl-36052064

ABSTRACT

Background: B lymphocytes play a pivotal regulatory role in the development of the immune response. It was previously shown that deficiency in B regulatory cells (Bregs) or a decrease in their anti-inflammatory activity can lead to immunological dysfunctions. However, the exact mechanisms of Bregs development and functioning are only partially resolved. For instance, only a little is known about the structure of their B cell receptor (BCR) repertoires in autoimmune disorders, including multiple sclerosis (MS), a severe neuroinflammatory disease with a yet unknown etiology. Here, we elucidate specific properties of B regulatory cells in MS. Methods: We performed a prospective study of the transitional Breg (tBreg) subpopulations with the CD19+CD24highCD38high phenotype from MS patients and healthy donors by (i) measuring their content during two diverging courses of relapsing-remitting MS: benign multiple sclerosis (BMS) and highly active multiple sclerosis (HAMS); (ii) analyzing BCR repertoires of circulating B cells by high-throughput sequencing; and (iii) measuring the percentage of CD27+ cells in tBregs. Results: The tBregs from HAMS patients carry the heavy chain with a lower amount of hypermutations than tBregs from healthy donors. The percentage of transitional CD24highCD38high B cells is elevated, whereas the frequency of differentiated CD27+ cells in this transitional B cell subset was decreased in the MS patients as compared with healthy donors. Conclusions: Impaired maturation of regulatory B cells is associated with MS progression.


Subject(s)
B-Lymphocytes, Regulatory , Multiple Sclerosis , Humans , Interleukin-10 , Prospective Studies , Receptors, Antigen, B-Cell
2.
Sci Rep ; 8(1): 12679, 2018 08 23.
Article in English | MEDLINE | ID: mdl-30139963

ABSTRACT

The discovery of antibody-mediated catalysis was a breakthrough that showed antibody function is not limited to specific binding interactions, and that immunoglobulins (Igs) may also chemically transform their target antigens. Recently, so-called "natural catalytic antibodies" have been intimately linked with several pathologies, where they either protect the organism or contribute to the development of autoimmune abnormalities. Previously, we showed that myelin-reactive autoantibodies from patients with multiple sclerosis (MS) and mice with experimental autoimmune encephalomyelitis (EAE) exhibit the ability to recognize and hydrolyse distinct epitopes within myelin basic protein (MBP). Further, the antibody-mediated cleavage of encephalitogenic MBP peptide 81-103, flanked by two fluorescent proteins, can serve as a novel biomarker for MS. Here, we report the next generation of this biomarker, based on the antibody-mediated degradation of a novel chemically synthesized FRET substrate, comprising the fluorophore Cy5 and the quencher QXL680, interconnected by the MBP peptide 81-99: Cy5-MBP81-99-QXL680. This substrate is degraded upon incubation with either purified antibodies from MS patients but not healthy donors or purified antibodies and splenocytes from EAE but not from non-immunized mice. Data presented herein suggest the elaboration of potential specific, rapid, and sensitive diagnostic criteria of active progressive MS.


Subject(s)
Autoimmune Diseases/diagnosis , Fluorescent Dyes , Neurodegenerative Diseases/diagnosis , Animals , Autoimmune Diseases/metabolism , Biomarkers/metabolism , Cells, Cultured , Encephalomyelitis, Autoimmune, Experimental/metabolism , Female , Humans , Immunoglobulin G/metabolism , Mice , Multiple Sclerosis/metabolism , Neurodegenerative Diseases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...