Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J. pediatr. (Rio J.) ; 98(4): 362-368, July-Aug. 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1386115

ABSTRACT

Abstract Objectives: To detect RSV or other thirteen respiratory viruses as possible causer agent of bronchiolitis in infants. Method: This is an epidemiological analytical study, conducted using a nasopharyngeal aspirate of 173 hospitalized children younger than two years old with severe bronchiolitis in three hospitals in the Campinas Metropolitan Region (CMR) during 2013-14. The data was statically evaluated by Pearson's chi-squared test with statistical significance of 0.05 and 95% confidence level. Results: As expected, the most prevalent viruses detected were RSV A and B in 47% and 16% of the samples, respectively. However, almost a third of severe bronchiolitis cases there were no detection of RSV, and the viruses more commonly detected were rhinoviruses, which were identified in almost a quarter of all positive samples for at least a viral agent. Conclusions: Although nothing could be concluded from the disease severity and clinicalepidemiological data, the present study's results indicate that severe bronchiolitis is not always related to RSV infections in children younger than two years old, and the rhinoviruses were more prevalent in these cases. These findings reinforce the need to carry out a

2.
J Pediatr (Rio J) ; 98(4): 362-368, 2022.
Article in English | MEDLINE | ID: mdl-34942156

ABSTRACT

OBJECTIVES: To detect RSV or other thirteen respiratory viruses as possible causer agent of bronchiolitis in infants. METHOD: This is an epidemiological analytical study, conducted using a nasopharyngeal aspirate of 173 hospitalized children younger than two years old with severe bronchiolitis in three hospitals in the Campinas Metropolitan Region (CMR) during 2013-14. The data was statically evaluated by Pearson's chi-squared test with statistical significance of 0.05 and 95% confidence level. RESULTS: As expected, the most prevalent viruses detected were RSV A and B in 47% and 16% of the samples, respectively. However, almost a third of severe bronchiolitis cases there were no detection of RSV, and the viruses more commonly detected were rhinoviruses, which were identified in almost a quarter of all positive samples for at least a viral agent. CONCLUSIONS: Although nothing could be concluded from the disease severity and clinical-epidemiological data, the present study's results indicate that severe bronchiolitis is not always related to RSV infections in children younger than two years old, and the rhinoviruses were more prevalent in these cases. These findings reinforce the need to carry out a viral diagnosis in the hospital emergency would be very appropriate for all cases of respiratory infections in children, even for diseases in which the primary etiological agent seems to be well known.


Subject(s)
Bronchiolitis, Viral , Bronchiolitis , Respiratory Syncytial Virus Infections , Respiratory Tract Infections , Bronchiolitis/diagnosis , Bronchiolitis/epidemiology , Bronchiolitis, Viral/epidemiology , Child , Child, Preschool , Humans , Infant , Respiratory Syncytial Virus Infections/epidemiology , Rhinovirus , Severity of Illness Index
3.
PLoS One ; 16(3): e0248885, 2021.
Article in English | MEDLINE | ID: mdl-33760876

ABSTRACT

One of the biggest challenges during the pandemic has been obtaining and maintaining critical material to conduct the increasing demand for molecular tests. Sometimes, the lack of suppliers and the global shortage of these reagents, a consequence of the high demand, make it difficult to detect and diagnose patients with suspected SARS-CoV-2 infection, negatively impacting the control of virus spread. Many alternatives have enabled the continuous processing of samples and have presented a decrease in time and cost. These measures thus allow broad testing of the population and should be ideal for controlling the disease. In this sense, we compared the SARS-CoV-2 molecular detection effectiveness by Real time RT-PCR using two different protocols for RNA extraction. The experiments were conducted in the National Institute of Health (INS) from Peru. We compared Ct values average (experimental triplicate) results from two different targets, a viral and internal control. All samples were extracted in parallel using a commercial kit and our alternative protocol-samples submitted to proteinase K treatment (3 µg/µL, 56°C for 10 minutes) followed by thermal shock (98°C for 5 minutes followed by 4°C for 2 minutes); the agreement between results was 100% in the samples tested. In addition, we compared the COVID-19 positivity between six epidemiological weeks: the initial two in that the Real time RT-PCR reactions were conducted using RNA extracted by commercial kit, followed by two other using RNA obtained by our kit-free method, and the last two using kit once again; they did not differ significantly. We concluded that our in-house method is an easy, fast, and cost-effective alternative method for extracting RNA and conducing molecular diagnosis of COVID-19.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , RNA, Viral/isolation & purification , Clinical Laboratory Techniques/methods , Diagnostic Tests, Routine/methods , Endopeptidase K/metabolism , Humans , Pandemics , Peru/epidemiology , RNA/genetics , RNA/isolation & purification , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics
4.
Infect Genet Evol ; 79: 104161, 2020 04.
Article in English | MEDLINE | ID: mdl-31881358

ABSTRACT

Cattle babesiosis is a tick-borne disease responsible for significant losses for the livestock industries in tropical areas of the world. These piroplasms are under constant control of the host immune system, which lead to a strong selective pressure for arising more virulent or attenuated phenotypes. Aiming to better understand the most critical genetic modifications in Babesia bovis genome, related to virulence, an in silico analysis was performed using DNA sequences from GenBank. Fourteen genes (sbp-2, sbp-4, trap, msa-1, msa-2b, msa-2c, Bv80 (or Bb-1), 18S rRNA, acs-1, ama-1, ß-tub, cp-2, p0, rap-1a) related to parasite infection and immunogenicity and ITS region were selected for alignment and comparison of several isolates of Babesia bovis from different geographic regions around the world. Among the 15 genes selected for the study of diversity, only 7 genes (sbp-2, sbp-4, trap, msa-1, msa-2b, msa-2c, Bv80) and the ITS region presented sufficient genetic variation for the studies of phylogeny. Despite this genetic diversity observed into groups, there was not sufficient information available to associate molecular markers with virulence of isolates. However, some genetic groups no were correlated with geographic region what could indicate some typical evolutionary characteristics in the relation between parasite-host. Further studies using these genes in herds presenting diverse clinical conditions are required. The better understanding of evolutionary mechanisms of the parasite may contribute to improve prophylactic and therapeutic measures. In this way, we suggest that genes used in our study are potential markers of virulence and attenuation and have to be analyzed with the use of sequences from animals that present clinical signs of babesiosis and asymptomatic carriers.


Subject(s)
Babesia bovis/pathogenicity , Babesiosis/parasitology , Cattle Diseases/parasitology , Computational Biology/methods , Virulence Factors/genetics , Animals , Babesia bovis/classification , Babesia bovis/genetics , Cattle , Computer Simulation , Evolution, Molecular , Genetic Markers , Genetic Variation , Phylogeny , Protozoan Proteins/genetics , Sequence Alignment , Sequence Analysis, DNA
6.
Viruses ; 4(11): 2432-47, 2012 Oct 24.
Article in English | MEDLINE | ID: mdl-23202489

ABSTRACT

HRSV is one of the most important pathogens causing acute respiratory tract diseases as bronchiolitis and pneumonia among infants. HRSV was isolated from two distinct communities, a public day care center and a public hospital in São José do Rio Preto - SP, Brazil. We obtained partial sequences from G gene that were used on phylogenetic and selection pressure analysis. HRSV accounted for 29% of respiratory infections in hospitalized children and 7.7% in day care center children. On phylogenetic analysis of 60 HRSV strains, 48 (80%) clustered within or adjacent to the GA1 genotype; GA5, NA1, NA2, BA-IV and SAB1 were also observed. SJRP GA1 strains presented variations among deduced amino acids composition and lost the potential O-glycosilation site at amino acid position 295, nevertheless this resulted in an insertion of two potential O-glycosilation sites at positions 296 and 297. Furthermore, a potential O-glycosilation site insertion, at position 293, was only observed for hospital strains. Using SLAC and MEME methods, only amino acid 274 was identified to be under positive selection. This is the first report on HRSV circulation and genotypes classification derived from a day care center community in Brazil.


Subject(s)
Adaptation, Biological , Genetic Variation , Genotype , Respiratory Syncytial Virus, Human/classification , Respiratory Syncytial Virus, Human/genetics , Amino Acid Sequence , Child , Child Day Care Centers , Child, Preschool , Female , Hospitals, Public , Humans , Infant , Male , Molecular Sequence Data , Phylogeny , Respiratory Syncytial Virus Infections/epidemiology , Selection, Genetic , Sequence Alignment , Viral Envelope Proteins/genetics
7.
Braz. j. microbiol ; 43(1): 98-108, Jan.-Mar. 2012. ilus, tab
Article in English | LILACS | ID: lil-622794

ABSTRACT

Viruses are the major cause of lower respiratory tract infections in childhood and the main viruses involved are Human Respiratory Syncytial Virus (HRSV), Human Metapneumovirus (HMPV), Influenzavirus A and B (FLUA and FLUB), Human Parainfluenza Virus 1, 2 and 3 (HPIV1, 2 and 3) and Human Rhinovirus (HRV). The purposes of this study were to detect respiratory viruses in hospitalized children younger than six years and identify the influence of temperature and relative air humidity on the detected viruses. Samples of nasopharyngeal washes were collected from hospitalized children between May/2004 and September/2005. Methods of viral detection were RT-PCR, PCR and HRV amplicons were confirmed by hybridization. Results showed 54% (148/272) of viral positivity. HRSV was detected in 29% (79/272) of the samples; HRV in 23.1% (63/272); HPIV3 in 5.1% (14/272); HMPV in 3.3% (9/272); HPIV1 in 2.9% (8/272); FLUB in 1.4% (4/272), FLUA in 1.1% (3/272), and HPIV2 in 0.3% (1/272). The highest detection rates occurred mainly in the spring 2004 and in the autumn 2005. It was observed that viral respiratory infections tend to increase as the relative air humidity decreases, showing significant association with monthly averages of minimal temperature and minimal relative air humidity. In conclusion, viral respiratory infections vary according to temperature and relative air humidity and viral respiratory infections present major incidences it coldest and driest periods.


Subject(s)
Humans , Child , Air Microbiology , Hybridization, Genetic , In Vitro Techniques , Paramyxoviridae Infections , Respiratory Syncytial Virus Infections , Reverse Transcriptase Polymerase Chain Reaction/methods , Virus Diseases , Respiratory Syncytial Virus, Human/isolation & purification , Air , Humidity , Inpatients , Methods , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...