Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 31(14): 21752-21764, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38393570

ABSTRACT

Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is routinely used as a rapid and cost-effective method for pathogen identification in clinical settings. In comparison, its performance in other microbiological fields, such as environmental microbiology, is still being tested, although isolates of environmental microbes are essential for in-depth in vivo studies of their biology, including biotechnological applications. We investigated the applicability of MALDI-TOF MS for the identification of bacterial isolates from a highly oligotrophic environment - Dinaric Karst caves, which likely harbor specific microorganisms. We cultured bacteria from the shell surface of the endemic mussel Congeria jalzici, one of the three known cave mussels in the world that lives in the Dinaric karst underground. The bacterial isolates were obtained by swabbing the shell surface of mussels living in microhabitats with different amounts of water: 10 air-exposed mussels, 10 submerged mussels, and 10 mussels in the hygropetric zone. A collection of 87 pure culture isolates was obtained, mostly belonging to the phylum Bacillota (72%), followed by Pseudomonadota (16%), Actinomycetota (11%), and Bacteroidota (1%). We compared the results of MALDI-TOF MS identification (Bruker databases DB-5989 and version 11, v11) with the results of 16S rDNA-based phylogenetic analysis, a standard procedure for bacterial identification. Identification to the genus level based on 16S rDNA was possible for all isolates and clearly outperformed the results from MALDI-TOF MS, although the updated MALDI-TOF MS database v11 gave better results than the DB-5989 version (85% versus 62%). However, identification to the species-level by 16S rDNA sequencing was achieved for only 17% of isolates, compared with 14% and 40% for the MALDI-TOF MS databases DB-5989 and v11 database, respectively. In conclusion, our results suggest that continued enrichment of MALDI-TOF MS libraries will result with this method soon becoming a rapid, accurate, and efficient tool for assessing the diversity of culturable bacteria from different environmental niches.


Subject(s)
Bivalvia , Caves , Animals , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Phylogeny , Bacteria/genetics , DNA, Ribosomal
2.
Sci Total Environ ; 749: 142357, 2020 Dec 20.
Article in English | MEDLINE | ID: mdl-33370905

ABSTRACT

Environments polluted with excessively high levels of antibiotics released from manufacturing sites can act as a source of transferable antibiotic resistance (AR) genes to human commensal and pathogenic bacteria. The aim of this study was to evaluate AR of bacteria isolated from the Sava river sediments (Croatia) at the discharge site of effluents from azithromycin production compared to those from the upstream site and isolates collected in Croatian hospitals. A total of 228 environmental strains of azithromycin-resistant bacteria were isolated and identified, with 124 from the discharge site and 104 from the upstream site. In addition, a total of 90 clinical, azithromycin-resistant streptococcal and staphylococcal isolates obtained from the Croatian Reference Center for Antibiotic Resistance Surveillance were analyzed. PCR screening of isolates on 11 relevant macrolide-resistance genes (MRGs) showed that discharge isolates had greater detection frequencies for 4 gene targets (ermB, msrE, mphE and ermF) compared to upstream isolates. Among clinical isolates, the most frequently detected gene was ermB, followed by msrD, mefE and mefC. The discharge site demonstrated a greater abundance of isolates with co-occurrence of two different MRGs (predominantly msrE-mphE) than the upstream site, but a lower abundance than the clinical sources (most commonly msrD-mefE). The simultaneous presence of three or even four MRGs was specific for the discharge and clinical isolates, but not for the upstream isolates. When MRG results were sorted by gene mechanism, the ribosomal methylation (erm) and protection genes (msr) were the most frequently detected among both the discharge and the clinical isolates. Following sequencing, high nucleotide sequence similarity was observed between ermB in the discharge isolates and the clinical streptococcal isolates, suggesting a possible transfer of the ermB gene between bacteria of clinical and environmental origin. Our study highlights the importance of environmental bacterial populations as reservoirs for clinically relevant macrolide-resistance genes.


Subject(s)
Anti-Bacterial Agents , Macrolides , Anti-Bacterial Agents/pharmacology , Bacteria , Croatia , Drug Resistance, Bacterial/genetics , Humans , Microbial Sensitivity Tests , Rivers
3.
Environ Int ; 123: 501-511, 2019 02.
Article in English | MEDLINE | ID: mdl-30622075

ABSTRACT

Effluents from antibiotic manufacturing may contain high concentrations of antibiotics, which are the main driving force behind the selection and spread of antibiotic resistance genes in the environment. However, our knowledge about the impact of such effluent discharges on the antibiotic resistome and bacterial communities is still limited. To gain insight into this impact, we collected effluents from an azithromycin-manufacturing industry discharge site as well as upstream and downstream sediments from the receiving Sava river during both winter and summer season. Chemical analyses of sediment and effluent samples indicated that the effluent discharge significantly increased the amount of macrolide antibiotics, heavy metals and nutrients in the receiving river sediments. Quantitative PCR revealed a significant increase of relative abundances of macrolide-resistance genes and class 1 integrons in effluent-impacted sediments. Amplicon sequencing of 16S rRNA genes showed spatial and seasonal bacterial community shifts in the receiving sediments. Redundancy analysis and Mantel test indicated that macrolides and copper together with nutrients significantly correlated with community shift close to the effluent discharge site. The number of taxa that were significantly increased in relative abundance at the discharge site decreased rapidly at the downstream sites, showing the resilience of the indigenous sediment bacterial community. Seasonal changes in the chemical properties of the sediment along with changes in effluent community composition could be responsible for sediment community shifts between winter and summer. Altogether, this study showed that the discharge of pharmaceutical effluents altered physicochemical characteristics and bacterial community of receiving river sediments, which contributed to the enrichment of macrolide-resistance genes and integrons.


Subject(s)
Azithromycin , Bacteria/drug effects , Drug Resistance, Bacterial/genetics , Rivers/microbiology , Water Pollution, Chemical/adverse effects , Drug Resistance, Microbial/genetics , Environmental Monitoring , Genes, Bacterial , Geologic Sediments/chemistry , Integrons , Metals, Heavy/analysis , Microbiota/drug effects , RNA, Ribosomal, 16S/genetics , Rivers/chemistry , Seasons , Wastewater/chemistry , Water Microbiology
5.
Water Res ; 126: 79-87, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28923406

ABSTRACT

Effluents from pharmaceutical industries are recognized as significant contributors to aquatic pollution with antibiotics. Although such pollution has been mostly reported in Asia, knowledge on industrial discharges in other regions of the world, including Europe, and on the effects associated with such exposures is still limited. Thus, we performed chemical, microbiological and ecotoxicological analyses of effluents from two Croatian pharmaceutical industries during four seasons. In treated effluents of the company synthesizing macrolide antibiotic azithromycin (AZI), the total concentration of AZI and two macrolide by-products from its synthesis was 1-3 orders of magnitude higher in winter and springtime (up to 10.5 mg/L) than during the other two seasons (up to 638 µg/L). Accordingly, the highest total concentrations (up to 30 µg/L) in the recipient river were measured in winter and spring. Effluents from second company formulating veterinary antibiotics contained fluoroquinolones, trimethoprim, sulfonamides and tetracyclines ranging from low µg/L to approx. 200 µg/L. Low concentrations of these antibiotics, from below the limit of quantification to approx. few µg/L, have also been measured in the recipient stream. High frequency of culturable bacteria resistant to AZI (up to 83%) or sulfamethazine (up to 90%) and oxytetracycline (up to 50%) were also found in studied effluents. Finally, we demonstrated that toxicity to algae and water fleas often exceeded the permitted values. Most highly contaminated effluents induced multiple abnormalities in zebrafish embryos. In conclusion, using a wide array of analyses we have demonstrated that discharges from pharmaceutical industries can pose a significant ecological and public health concern due to their toxicity to aquatic organisms and risks for promoting development and spread of antibiotic resistance.


Subject(s)
Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/toxicity , Drug Industry , Water Pollutants, Chemical/analysis , Animals , Aquatic Organisms/drug effects , Cladocera/drug effects , Croatia , Daphnia/drug effects , Drug Resistance, Bacterial/drug effects , Drug Resistance, Microbial , Ecotoxicology/methods , Embryo, Nonmammalian/drug effects , Environment , Environmental Monitoring , Industrial Waste/analysis , Rivers/chemistry , Seasons , Veterinary Drugs/analysis , Water Pollutants, Chemical/toxicity , Zebrafish/embryology
6.
Front Microbiol ; 8: 2675, 2017.
Article in English | MEDLINE | ID: mdl-29387045

ABSTRACT

Environments polluted by direct discharges of effluents from antibiotic manufacturing are important reservoirs for antibiotic resistance genes (ARGs), which could potentially be transferred to human pathogens. However, our knowledge about the identity and diversity of ARGs in such polluted environments remains limited. We applied functional metagenomics to explore the resistome of two Croatian antibiotic manufacturing effluents and sediments collected upstream of and at the effluent discharge sites. Metagenomic libraries built from an azithromycin-production site were screened for resistance to macrolide antibiotics, whereas the libraries from a site producing veterinary antibiotics were screened for resistance to sulfonamides, tetracyclines, trimethoprim, and beta-lactams. Functional analysis of eight libraries identified a total of 82 unique, often clinically relevant ARGs, which were frequently found in clusters and flanked by mobile genetic elements. The majority of macrolide resistance genes identified from matrices exposed to high levels of macrolides were similar to known genes encoding ribosomal protection proteins, macrolide phosphotransferases, and transporters. Potentially novel macrolide resistance genes included one most similar to a 23S rRNA methyltransferase from Clostridium and another, derived from upstream unpolluted sediment, to a GTPase HflX from Emergencia. In libraries deriving from sediments exposed to lower levels of veterinary antibiotics, we found 8 potentially novel ARGs, including dihydrofolate reductases and beta-lactamases from classes A, B, and D. In addition, we detected 7 potentially novel ARGs in upstream sediment, including thymidylate synthases, dihydrofolate reductases, and class D beta-lactamase. Taken together, in addition to finding known gene types, we report the discovery of novel and diverse ARGs in antibiotic-polluted industrial effluents and sediments, providing a qualitative basis for monitoring the dispersal of ARGs from environmental hotspots such as discharge sites of pharmaceutical effluents.

7.
Res Microbiol ; 167(6): 462-71, 2016.
Article in English | MEDLINE | ID: mdl-27130282

ABSTRACT

In bacteria, the RecA protein forms recombinogenic filaments required for the SOS response and DNA recombination. In order to form a recombinogenic filament, wild type RecA needs to bind ATP and to interact with mediator proteins. The RecA730 protein is a mutant version of RecA with superior catalytic abilities, allowing filament formation without the help of mediator proteins. The mechanism of RecA730 filament formation is not well understood, and the question remains as to whether the RecA730 protein requires ATP binding in order to become competent for filament formation. We examined two mutants, recA730,4159 (presumed to be defective for ATP binding) and recA730,2201 (defective for ATP hydrolysis), and show that they have different properties with respect to SOS induction, conjugational recombination and double-strand break repair. We show that ATP binding is essential for all RecA730 functions, while ATP hydrolysis is required only for double-strand break repair. Our results emphasize the similarity of the SOS response and conjugational recombination, neither of which requires ATP hydrolysis by RecA730.


Subject(s)
Escherichia coli/enzymology , Escherichia coli/physiology , Mutant Proteins/metabolism , Rec A Recombinases/metabolism , Recombination, Genetic , SOS Response, Genetics , Adenosine Triphosphate/metabolism , DNA Repair , Escherichia coli/genetics , Mutant Proteins/genetics , Protein Binding , Protein Multimerization , Rec A Recombinases/genetics
8.
Biochimie ; 94(9): 1918-25, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22617484

ABSTRACT

Homologous recombination is a crucial process for the maintenance of genome integrity. The two main recombination pathways in Escherichia coli (RecBCD and RecF) differ in the initiation of recombination. The RecBCD enzyme is the only component of the RecBCD pathway which acts in the initiation of recombination, and possesses all biochemical activities (helicase, 5'-3' exonuclease, χ cutting and loading of the RecA protein onto single-stranded (ss) DNA) needed for the processing of double stranded (ds) DNA breaks (DSB). When the nuclease and RecA loading activities of the RecBCD enzyme are inactivated, the proteins of the RecF recombination machinery, i.e., RecJ and RecFOR substitute for the missing 5'-3' exonuclease and RecA loading activity respectively. The above mentioned activities of the RecBCD enzyme are regulated by an octameric sequence known as the χ site (5'-GCTGGTGG-3'). One class of recC mutations, designated recC*, leads to reduced χ cutting in vitro. The recC1004 strain (a member of the recC* mutant class) is recombination proficient and resistant to UV radiation. In this paper, we studied the effects of mutations in RecF pathway genes on DNA repair (after UV and γ radiation) and on conjugational recombination in recC1004 and recC1004 recD backgrounds. We found that DNA repair after UV and γ radiation in the recC1004 and recC1004 recD backgrounds depends on recFOR and recJ gene products. We also showed that the recC1004 mutant has reduced survival after γ radiation. This phenotype is suppressed by the recD mutation which abolishes the RecBCD dependent nuclease activity. Finally, the genetic requirements for conjugational recombination differ from those for DNA repair. Conjugational recombination in recC1004 recD mutants is dependent on the recJ gene product. Our results emphasize the importance of the canonical χ recognition activity in DSB repair and the significance of interchange between the components of two recombination machineries in achieving efficient DNA repair.


Subject(s)
DNA Repair/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Exodeoxyribonuclease V/genetics , Exodeoxyribonuclease V/metabolism , Mutation , Recombination, Genetic/genetics , DNA Breaks, Double-Stranded/radiation effects , DNA Helicases/metabolism , DNA Repair/radiation effects , Deoxyribonucleases/metabolism , Escherichia coli/enzymology , Recombination, Genetic/radiation effects
9.
J Bacteriol ; 193(18): 4643-51, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21764927

ABSTRACT

The RecA protein in its functional state is in complex with single-stranded DNA, i.e., in the form of a RecA filament. In SOS induction, the RecA filament functions as a coprotease, enabling the autodigestion of the LexA repressor. The RecA filament can be formed by different mechanisms, but all of them require three enzymatic activities essential for the processing of DNA double-stranded ends. These are helicase, 5'-3' exonuclease, and RecA loading onto single-stranded DNA (ssDNA). In some mutants, the SOS response can be expressed constitutively during the process of normal DNA metabolism. The RecA730 mutant protein is able to form the RecA filament without the help of RecBCD and RecFOR mediators since it better competes with the single-strand binding (SSB) protein for ssDNA. As a consequence, the recA730 mutants show high constitutive SOS expression. In the study described in this paper, we studied the genetic requirements for constitutive SOS expression in recA730 mutants. Using a ß-galactosidase assay, we showed that the constitutive SOS response in recA730 mutants exhibits different requirements in different backgrounds. In a wild-type background, the constitutive SOS response is partially dependent on RecBCD function. In a recB1080 background (the recB1080 mutation retains only helicase), constitutive SOS expression is partially dependent on RecBCD helicase function and is strongly dependent on RecJ nuclease. Finally, in a recB-null background, the constitutive SOS expression of the recA730 mutant is dependent on the RecJ nuclease. Our results emphasize the importance of the 5'-3' exonuclease for high constitutive SOS expression in recA730 mutants and show that RecBCD function can further enhance the excellent intrinsic abilities of the RecA730 protein in vivo.


Subject(s)
Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Mutation, Missense , Rec A Recombinases/genetics , SOS Response, Genetics , Escherichia coli Proteins/metabolism , Exodeoxyribonuclease V/metabolism , Exodeoxyribonucleases/metabolism , Genes, Reporter , beta-Galactosidase/genetics , beta-Galactosidase/metabolism
10.
Res Microbiol ; 162(3): 262-9, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21187148

ABSTRACT

Homologous recombination is an essential process in double-strand break repair. The main requirement for recombination is formation of a RecA filament. Double-strand breaks can be processed into a RecA filament by the action of three enzymatic activities: helicase, 5'-3' exonuclease and RecA loading onto ssDNA. These activities are provided by the RecBCD enzyme in wild type cells or by the RecF pathway gene products in recBC sbcBC(D) cells. In the recBD1080A mutant (recB∗ mutant), the recombination machineries of RecBCD and RecF pathways are interchangeable and include RecB∗CD enzyme (helicase), RecJ (5'-3' exonuclease) and RecFOR (RecA loading). The mutant RecA730 protein is able to produce a RecA filament without the help of RecFOR mediators, since it more efficiently competes with SSB protein for ssDNA than the normal RecA protein. It was previously shown that the recA730 mutation suppresses UV sensitivity in a uvrA recFOR genetic background. We tested whether the recA730 mutation can suppress recombination and DNA repair deficiency in a recB∗ mutant and its derivatives. We show that the recA730 mutation suppresses recombination deficiency in a recB∗ recFOR background, where the defect is at the level of RecA loading, but not in the recB∗ recJ background where the defect is at the level of nuclease activity.


Subject(s)
DNA, Bacterial/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli/genetics , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , Recombination, Genetic , DNA, Bacterial/genetics , DNA-Binding Proteins/genetics , Exodeoxyribonuclease V/genetics , Gene Deletion , Mutant Proteins/genetics , Mutant Proteins/metabolism , Suppression, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...