Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 23(1): 602, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35986253

ABSTRACT

It is currently assumed that around 100 million years ago, the common ancestor to the Fabales, Fagales, Rosales and Cucurbitales in Gondwana, developed a root nodule symbiosis with a nitrogen-fixing bacterium. The symbiotic trait evolved first in Frankia cluster-2; thus, strains belonging to this cluster are the best extant representatives of this original symbiont. Most cluster-2 strains could not be cultured to date, except for Frankia coriariae, and therefore many aspects of the symbiosis are still elusive. Based on phylogenetics of cluster-2 metagenome-assembled genomes (MAGs), it has been shown that the genomes of strains originating in Eurasia are highly conserved. These MAGs are more closely related to Frankia cluster-2 in North America than to the single genome available thus far from the southern hemisphere, i.e., from Papua New Guinea.To unravel more biodiversity within Frankia cluster-2 and predict routes of dispersal from Gondwana, we sequenced and analysed the MAGs of Frankia cluster-2 from Coriaria japonica and Coriaria intermedia growing in Japan, Taiwan and the Philippines. Phylogenetic analyses indicate there is a clear split within Frankia cluster-2, separating a continental from an island lineage. Presumably, these lineages already diverged in Gondwana.Based on fossil data on the host plants, we propose that these two lineages dispersed via at least two routes. While the continental lineage reached Eurasia together with their host plants via the Indian subcontinent, the island lineage spread towards Japan with an unknown host plant.


Subject(s)
Frankia , Magnoliopsida , Frankia/genetics , Magnoliopsida/genetics , Metagenome , Nitrogen Fixation , Phylogeny , Plants/genetics , Symbiosis/genetics
2.
Int J Syst Evol Microbiol ; 72(12)2022 Dec.
Article in English | MEDLINE | ID: mdl-36748598

ABSTRACT

An actinobacterial strain, CMB-FB, was isolated from surface-sterilized root nodules of a Coriaria intermedia plant growing along Halsema Highway in the province of Benguet (Luzon, Philippines). The 16S rRNA gene sequence of CMB-FB showed high sequence similarity to those of the type strains of Streptomyces rishiriensis (99.4 %), Streptomyces humidus (99.1 %), Streptomyces cacaoi subsp. asoensis (99.0 %), and Streptomyces phaeofaciens (98.6 %). The major menaquinones of CMB-FB were composed of MK-9(H4), MK-9(H6) and MK-9(H8), and there was a minor contribution of MK-9(H10). The polar lipid profile consisted of phosphatidylethanolamine, unidentified aminolipids and phospholipids, a glycophospholipid and four unidentified lipids. The diagnostic diamino acid of the peptidoglycan was meso-diaminopimelic acid. The major fatty acids were iso-C16 : 0, anteiso-C15 : 0 and anteiso-C17 : 0. The results of physiological analysis indicated that CMB-FB was mesophilic. The results of phylogenetic, genome-genome distance calculation and average nucleotide identity analysis indicated that the isolated strain represents the type strain of a novel species. On the basis of these results, strain CMB-FB (=DSM 112754T=LMG 32457T) is proposed as the type strain of the novel species Streptomyces coriariae sp. nov.


Subject(s)
Fatty Acids , Streptomyces , Fatty Acids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques , Base Composition , Philippines , Phospholipids/chemistry , Vitamin K 2/chemistry
3.
J Health Pollut ; 8(20): 181205, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30560004

ABSTRACT

BACKGROUND: Water quality in the Marilao-Meycauayan-Obando river system (MMORS) of Bulacan, the Philippines, is of great concern due to the pollution load from local industries. The river system is currently used as a source of water for the aquaculture industry in Bulacan. OBJECTIVES: In order to address organic and heavy metal pollution, several remediation strategies were tested in aquaculture ponds along the river system. Strategies such as phytoremediation (vetiver grass pontoons), application of probiotics and zeolite (with filtration as pre-treatment) were utilized in ponds to decrease or remove toxic pollutants in water and sediments. METHODS: Two sites were chosen as the pilot remediation sites - ponds in Barangay Nagbalon, Marilao and Barangay Liputan, Meycauayan, Bulacan. Pond bottom preparation was done to improve the condition of the pond bottom sediments before stocking by adding zeolite. Physicochemical parameters of water such as dissolved oxygen (DO), temperature, pH, salinity, ammonia, phosphate, biochemical oxygen demand (BOD) and chemical oxygen demand (COD) were monitored throughout the culture period. Heavy metals in sediments and fish were monitored. Fish parameters such as average body weight and feed conversion ratio were determined. RESULTS: The DO levels were below recommended levels in the morning and reached a supersaturated level in the afternoon. Ammonia and COD levels were above recommended limits. A decreasing trend was observed for ammonia levels in treatment ponds. In terms of the growth of milkfish, the pond with probiotics showed the highest growth and better feed conversion ratio in Nagbalon and in the phytoremediation pond in Liputan. Percentage survival of milkfish was much higher at Liputan. Copper, chromium, lead and manganese were detected in pond sediments. After application of zeolite, there was a decrease in lead levels throughout the culture period. CONCLUSIONS: The different remediation studies were compared in terms of cost, effectivity and application and phytoremediation (vetiver grass pontoons) was determined to be the most cost-effective remediation strategy. COMPETING INTERESTS: The authors declare no competing financial interests.

4.
Appl Environ Microbiol ; 71(12): 8836-45, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16332880

ABSTRACT

Mercury is a redox-active heavy metal that reacts with active thiols and depletes cellular antioxidants. Active resistance to the mercuric ion is a widely distributed trait among bacteria and results from the action of mercuric reductase (MerA). Protein phylogenetic analysis of MerA in bacteria indicated the occurrence of a second distinctive form of MerA among the archaea, which lacked an N-terminal metal recruitment domain and a C-terminal active tyrosine. To assess the distribution of the forms of MerA in an interacting community comprising members of both prokaryotic domains, studies were conducted at a naturally occurring mercury-rich geothermal environment. Geochemical analyses of Coso Hot Springs indicated that mercury ore (cinnabar) was present at concentrations of parts per thousand. Under high-temperature and acid conditions, cinnabar may be oxidized to the toxic form Hg2+, necessitating mercury resistance in resident prokaryotes. Culture-independent analysis combined with culture-based methods indicated the presence of thermophilic crenarchaeal and gram-positive bacterial taxa. Fluorescence in situ hybridization analysis provided quantitative data for community composition. DNA sequence analysis of archaeal and bacterial merA sequences derived from cultured pool isolates and from community DNA supported the hypothesis that both forms of MerA were present. Competition experiments were performed to assess the role of archaeal merA in biological fitness. An essential role for this protein was evident during growth in a mercury-contaminated environment. Despite environmental selection for mercury resistance and the proximity of community members, MerA retains the two distinct prokaryotic forms and avoids genetic homogenization.


Subject(s)
Bacteria/enzymology , Bacteria/isolation & purification , Hot Springs/chemistry , Hot Springs/microbiology , Mercury/analysis , Oxidoreductases/analysis , Water Microbiology , Amino Acid Sequence , Bacteria/classification , Bacteria/genetics , Base Sequence , Cloning, Molecular , DNA Primers , In Situ Hybridization, Fluorescence , Molecular Sequence Data , Phylogeny , Sequence Alignment , Sequence Homology, Amino Acid
5.
Int J Syst Evol Microbiol ; 54(Pt 5): 1703-1707, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15388732

ABSTRACT

A thermo-acidophilic Gram-positive bacterium, strain CsHg2T, which grows aerobically at 35-65 degrees C (optimum 55 degrees C) and at pH 2.0-6.0 (optimum 4.0), was isolated from a geothermal pool located in Coso Hot Springs in the Mojave Desert, California, USA. Phylogenetic analysis of 16S rRNA gene sequences showed that this bacterium was most closely related to the type strains of Alicyclobacillus acidocaldarius (97.8 % identity) and Alicyclobacillus sendaiensis (96.9 %), three Japanese strains denoted as UZ-1, KHA-31 and MIH 332 (96.1-96.5 %) and Alicyclobacillus genomic species FR-6 (96.3 %). Phenotypic characteristics including temperature and pH optima, G+C composition, acid production from a variety of carbon sources and sensitivity to different metal salts distinguished CsHg2T from A. acidocaldarius, A. sendaiensis and FR-6. The cell lipid membrane was composed mainly of omega-cyclohexyl fatty acid, consistent with membranes from other Alicyclobacillus species. Very low DNA-DNA hybridization values between CsHg2T and the type strains of Alicyclobacillus indicate that CsHg2T represents a distinct species. On the basis of these results, the name Alicyclobacillus vulcanalis sp. nov. is proposed for this organism. The type strain is CsHg2T (ATCC BAA-915T = DSM 16176T).


Subject(s)
Gram-Positive Bacteria/classification , Gram-Positive Bacteria/isolation & purification , Hot Springs/microbiology , Aerobiosis , Anti-Bacterial Agents/pharmacology , Bacterial Typing Techniques , Base Composition , California , DNA, Bacterial/chemistry , DNA, Bacterial/isolation & purification , DNA, Ribosomal/chemistry , DNA, Ribosomal/isolation & purification , Fatty Acids/analysis , Genes, rRNA , Gram-Positive Bacteria/physiology , Hydrogen-Ion Concentration , Metals/pharmacology , Microbial Sensitivity Tests , Molecular Sequence Data , Nucleic Acid Hybridization , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Temperature , Water Microbiology
6.
J Bacteriol ; 186(2): 427-37, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14702312

ABSTRACT

Mercury resistance mediated by mercuric reductase (MerA) is widespread among bacteria and operates under the control of MerR. MerR represents a unique class of transcription factors that exert both positive and negative regulation on gene expression. Archaea and bacteria are prokaryotes, yet little is known about the biological role of mercury in archaea or whether a resistance mechanism occurs in these organisms. The archaeon Sulfolobus solfataricus was sensitive to mercuric chloride, and low-level adaptive resistance could be induced by metal preconditioning. Protein phylogenetic analysis of open reading frames SSO2689 and SSO2688 clarified their identity as orthologs of MerA and MerR. Northern analysis established that merA transcription responded to mercury challenge, since mRNA levels were transiently induced and, when normalized to 7S RNA, approximated values for other highly expressed transcripts. Primer extension analysis of merA mRNA predicted a noncanonical TATA box with nonstandard transcription start site spacing. The functional roles of merA and merR were clarified further by gene disruption. The merA mutant exhibited mercury sensitivity relative to wild type and was defective in elemental mercury volatilization, while the merR mutant was mercury resistant. Northern analysis of the merR mutant revealed merA transcription was constitutive and that transcript abundance was at maximum levels. These findings constitute the first report of an archaeal heavy metal resistance system; however, unlike bacteria the level of resistance is much lower. The archaeal system employs a divergent MerR protein that acts only as a negative transcriptional regulator of merA expression.


Subject(s)
Bacterial Proteins/genetics , DNA-Binding Proteins/genetics , Mercury/pharmacology , Sulfolobus/drug effects , Adaptation, Physiological , Amino Acid Sequence , Base Sequence , Gene Expression Regulation, Bacterial , Molecular Sequence Data , Phylogeny , Sulfolobus/genetics , TATA Box , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...