Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Chim Slov ; 60(3): 495-504, 2013.
Article in English | MEDLINE | ID: mdl-24169703

ABSTRACT

Fluorination processes of polymer surfaces are able to lead to drastic modifications of the surface properties without changing the bulk characteristics of the virgin material. In this paper, two types of polymers, i.e. ultrahigh molecular weight polyethylene (UHMWPE) and high density polyethylene (HDPE), are considered. The surface of these materials have been modified using two different fluorination routes, both carried out at room temperature: the direct fluorination with 10% F2 + 90% He gaseous mixtures and the radio-frequency plasma-enhanced fluorination (PEF) using either O2/CF4 mixtures or c-C4F8. The effect of these processes on the surface of the polymer samples are compared using mostly XPS results. The different components of the C1s spectra are assigned in term of CFx bonding, giving valuable information on the surface fluorination rate.


Subject(s)
Biocompatible Materials/chemistry , Polyethylene/chemistry , Polyethylenes/chemistry , Cells, Cultured , Halogenation , Spectroscopy, Fourier Transform Infrared , Surface Properties
2.
Phys Chem Chem Phys ; 10(17): 2390-8, 2008 May 07.
Article in English | MEDLINE | ID: mdl-18414730

ABSTRACT

The multistep reduction of a binuclear Ni(ii) Robson-type complex with a multidentate template-like organic ligand (formed from 4-tert-butyl-2,6-diformylphenol and 1,3-diaminopropane), Ni(2)L, is studied using the electron photoemission technique. The number of transferred electrons corresponding to a single reduction wave is found to be 8 per complex species. This value is attributed to both complete Ni(ii) reduction (with Ni metal formation) and ligand reduction. Contributions of Ni(ii) and ligand to acceptor orbital were estimated. Three initial subsequent steps correspond to electron transfer to mixed metal-ligand orbital with comparable contributions. For more deep reduction, ligand contribution predominates. The first single-electron step is evidenced to be rate-determining, with the rate constant of 0.03 cm(2) s(-1). The latter value is discussed in the framework of a semiquantitative analysis of the rate constants estimated in the framework of quantum-mechanical electron transfer theory for different orientations of Ni(2)L in the reaction layer. The analysis includes estimations of key kinetic parameters (electronic transmission coefficient, solvent- and intramolecular contributions to the total reorganization energy) which strongly rest on the results of quantum chemical modeling. The transmission coefficients at realistic electrode-reactant distances of the closest approach are below 0.001. This means that despite of the noticeable delocalization of Ni(2)L acceptor orbital, the electron transfer is diabatic. Predominating contribution to reorganization energy results from solvent and does not exceed 0.5 eV for any reactant orientation. The highest reactivity is predicted for a planar orientation located mostly outside the compact part of electric double layer. The Ni(2)L adsorption in planar and vertical orientations on mercury is addressed as well. The results give a clear explanation of the previously observed self-inhibition of "dark" reduction of Ni(2)L on mercury and independent data on the adsorption of these species. The discovered combination of various orientation effects is compared with effects observed for other reactants.


Subject(s)
Diamines/chemistry , Nickel/chemistry , Organometallic Compounds/chemistry , Phenols/chemistry , Computer Simulation , Electrochemistry , Kinetics , Ligands , Models, Chemical , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...