Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37570027

ABSTRACT

Copper generally exhibits high electrical conductivity but has poor mechanical properties. Although alloying can improve the latter characteristic, it usually leads to a decrease in electrical conductivity. To address this issue, a promising approach is to enhance the performance of copper while maintaining high electrical conductivity through optimized deformation processing, which refines the structure and increases mechanical properties. This paper focuses on assessing the effects of rotary swaging, a form of deformation processing, on microstructures and substructures of electroconductive copper bars. This analysis is complemented by experimental measurements of electrical conductivity. The results demonstrate that gradual swaging, i.e., applying different swaging ratios, influences the structure-forming processes and consequently affects the electrical conductivity. The increased electrical conductivity was found to be associated with the elongation of the grains in the direction of the electron movement.

2.
Sci Rep ; 8(1): 14694, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30279538

ABSTRACT

In this work, we shed new light on the highly debated issue of chromatin fragmentation in cryopreserved cells. Moreover, for the first time, we describe replicating cell-specific DNA damage and higher-order chromatin alterations after freezing and thawing. We identified DNA structural changes associated with the freeze-thaw process and correlated them with the viability of frozen and thawed cells. We simultaneously evaluated DNA defects and the higher-order chromatin structure of frozen and thawed cells with and without cryoprotectant treatment. We found that in replicating (S phase) cells, DNA was preferentially damaged by replication fork collapse, potentially leading to DNA double strand breaks (DSBs), which represent an important source of both genome instability and defects in epigenome maintenance. This induction of DNA defects by the freeze-thaw process was not prevented by any cryoprotectant studied. Both in replicating and non-replicating cells, freezing and thawing altered the chromatin structure in a cryoprotectant-dependent manner. Interestingly, cells with condensed chromatin, which was strongly stimulated by dimethyl sulfoxide (DMSO) prior to freezing had the highest rate of survival after thawing. Our results will facilitate the design of compounds and procedures to decrease injury to cryopreserved cells.


Subject(s)
Chromatin/drug effects , Cryopreservation/methods , Cryoprotective Agents/pharmacology , Freezing/adverse effects , S Phase/drug effects , Cell Survival/drug effects , Cell Survival/genetics , Chromatin/genetics , DNA Breaks, Double-Stranded/drug effects , Dimethyl Sulfoxide/pharmacology , Fibroblasts , Humans , MCF-7 Cells , Skin/cytology
3.
RSC Adv ; 7(1): 352-360, 2017.
Article in English | MEDLINE | ID: mdl-28936355

ABSTRACT

In this work the physico-chemical properties of selected cryoprotectants (antifreeze protein TrxA-AFP752, trehalose and dimethyl sulfoxide) were correlated with their impact on the constitution of ice and influence on frozen/thawed cell viability. The freezing processes and states of investigated materials solutions were described and explained from a fundamental point of view using ab-initio modelling (molecular dynamics, DFT), Raman spectroscopy, Differential Scanning Calorimetry and X-Ray Diffraction. For the first time, in this work we correlated the microscopic view (modelling) with the description of the frozen solution states and put these results in the context of human skin fibroblast viability after freezing and thawing. DMSO and AFP had different impacts on their solution's freezing process but in both cases the ice crystallinity size was considerably reduced. DMSO and AFP treatment in different ways improved the viability of frozen/thawed cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...