Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38792218

ABSTRACT

Water pollution, particularly from heavy metals, poses a significant threat to global health, necessitating efficient and environmentally friendly removal methods. This study introduces novel zeolite-based adsorbents, specifically alkali-activated foamed zeolite (AAFZ), for the effective adsorption of Cu(II) and Ni(II) ions from aqueous solutions. The adsorbents' capabilities were comprehensively characterized through kinetic and isotherm analyses. Alkaline activation induced changes in chemical composition and crystalline structure, as observed via XRF and XRD analyses. AAFZ exhibited a significantly larger pore volume (1.29 times), higher Si/Al ratio (1.15 times), and lower crystallinity compared to ZZ50, thus demonstrating substantially higher adsorption capacity for Cu(II) and Ni(II) compared to ZZ50. The maximum monolayer adsorption capacities of ZZ50 and AAFZ for Cu(II) were determined to be 69.28 mg/g and 99.54 mg/g, respectively. In the case of Ni(II), the maximum monolayer adsorption capacities for ZZ50 and AAFZ were observed at 48.53 mg/g and 88.99 mg/g, respectively. For both adsorbents, the optimum pH for adsorption of Cu(II) and Ni(II) was found to be 5 and 6, respectively. Equilibrium was reached around 120 min, and the pseudo-second-order kinetics accurately depicted the chemisorption process. The Langmuir isotherm model effectively described monolayer adsorption for both adsorbents. Furthermore, the regeneration experiment demonstrated that AAFZ could be regenerated for a minimum of two cycles using hydrochloric acid (HCl). These findings highlight the potential of the developed adsorbents as promising tools for effective and practical adsorption applications.

2.
Materials (Basel) ; 17(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38591543

ABSTRACT

Elevated concentrations of heavy metals in natural waters can cause significant ecological problems. It is therefore essential to ensure their removal from any water discharged into the environment immediately, especially in case of an accident, where there is a risk of releasing large quantities or high concentrations. The aim of this paper is to test a newly developed adsorbent for the removal of heavy metals from aqueous solutions-in particular, it is very fast adsorption, and thus efficiency, during clean-ups. The alkali-activated foamed zeolite adsorbent was laboratory-prepared and -tested in both batch and flow-through arrangements on single and multi-component solutions and compared with natural zeolite. The experimental setup for batch adsorption consisted of a set of samples and solutions containing iron, cobalt, manganese, zinc and nickel. The samples were put on a horizontal shaker with a 500 mg adsorbent loading in a 50 mL solution. The column adsorption experimental setup consisted of a glass column with an inside diameter of 15 mm and a bed length of 165 mm. A measured amount of each adsorbent was added to the column to achieve a filter fixed-bed height of 160 mm. The high efficiency of the tested adsorbent on various heavy metals was confirmed. The adsorbent has a high potential for use in decontamination processes, water protection and landscape revitalization. Due to its rapid precipitation and subsequent fixation of metal cations in the form of insoluble oxide or hydroxide, it can be used as an emergency adsorbent, the great advantage of which is its low production cost and natural origin.

3.
ACS Omega ; 8(22): 19374-19384, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37305320

ABSTRACT

The conversion of ethanol into petrochemicals, such as ethyl and butyl acetate, butanol, hexanol, and so forth was studied. The conversion was catalyzed by Mg-Fe mixed oxide modified with a second transition metal (Ni, Cu, Co, Mn, or Cr). The main aim was to describe the influence of second transition metal on (i) the catalyst itself and (ii) reaction products such as ethyl acetate, butanol, hexanol, acetone, and ethanal. Moreover, the results were compared with the results of pure Mg-Fe. The reaction was carried out in the gas phase in a flow reactor with a weight hour space velocity of 4.5 h-1 for 32 h at three reaction temperatures (280, 300, and 350 °C). The metals Ni and Cu in Mg-Fe oxide enhanced the ethanol conversion due to the population of active dehydrogenation sites. Despite the lower acido-basicity, Cu, Co, and Ni supported the yield of ethyl acetate, and Cu and Ni also promoted the yield of higher alcohols. Ni was related to the extent of the gasification reactions. Moreover, long-term stability (by leaching of metals) test was carried out for all catalysts (128 h).

SELECTION OF CITATIONS
SEARCH DETAIL
...