Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21257283

ABSTRACT

BackgroundIn a previous open-label trial, early anakinra treatment guided by elevated soluble urokinase plasminogen activator receptor (suPAR) prevented progression of COVID-19 pneumonia into respiratory failure. MethodsIn the SAVE-MORE multicenter trial, 594 hospitalized patients with moderate and severe COVID-19 pneumonia and plasma suPAR 6 ng/ml or more and receiving standard-of-care were 1:2 randomized to subcutaneous treatment with placebo or 100 mg anakinra once daily for 10 days. The primary endpoint was the overall clinical status of the 11-point World Health Organization ordinal Clinical Progression Scale (WHO-CPS) at day 28. The changes of the WHO-CPS and of the sequential organ failure assessment (SOFA) score were the main secondary endpoints. ResultsAnakinra-treated patients were distributed to lower strata of WHO-CPS by day 28 (adjusted odds ratio-OR 0.36; 95%CI 0.26-0.50; P<0.001); anakinra protected from severe disease or death (6 or more points of WHO-CPS) (OR: 0.46; P: 0.010). The median absolute decrease of WHO-CPS in the placebo and anakinra groups from baseline was 3 and 4 points respectively at day 28 (OR 0.40; P<0.0001); and 2 and 3 points at day 14 (OR 0.63; P: 0.003); the absolute decrease of SOFA score was 0 and 1 points (OR 0.63; P: 0.004). 28-day mortality decreased (hazard ratio: 0.45; P: 0.045). Hospital stay was shorter. ConclusionsEarly start of anakinra treatment guided by suPAR provides 2.78 times better improvement of overall clinical status in moderate and severe COVID-19 pneumonia. (Sponsored by the Hellenic Institute for the Study of Sepsis ClinicalTrials.gov identifier, NCT04680949)

2.
Preprint in English | medRxiv | ID: ppmedrxiv-20217455

ABSTRACT

IntroductionThe management of pneumonia caused by SARS-CoV-2 should rely on early recognition of the risk for progression to severe respiratory failure (SRF) and its prevention. We investigated if early suPAR (soluble urokinase plasminogen activator receptor)-guided anakinra treatment could prevent COVID-19-assocated SRF. MethodsIn this open-label prospective trial, 130 patients admitted with SARS-CoV-2 pneumonia SARS-CoV-2 and suPAR levels [≥]6 g/l were assigned to subcutaneous anakinra 100mg once daily for 10 days. The primary outcome was the incidence of SRF at day 14. Secondary outcomes were 30-day mortality, changes in sequential organ failure assessment (SOFA) score, of cytokine-stimulation pattern and of circulating inflammatory mediators. Equal number of propensity score-matched comparators for comorbidities, severity on admission and standard-of care (SOC) were studied. ResultsThe incidence of SRF was 22.3% (95% CI, 16.0-30.2%) among anakinra-treated patients and 59.2% (95% CI, 50.6-67.3%; P: 4.6 x 10-8) among SOC comparators (hazard ratio, 0.30; 95%CI, 0.20-0.46). 30-day mortality was 11.5% (95% CI, 7.1-18.2%) and 22.3% (95% CI, 16.0-30.2%) respectively (hazard ratio 0.49; 95% CI 0.25-0.97%; P: 0.041). Anakinra treatment was associated with decrease in SOFA score and in circulating interleukin (IL)-6, sCD163 and sIL2-R; the serum IL-10/IL-6 ratio on day 7 was inversely associated with the change in SOFA score. Duration of stay at the intensive care unit and at hospital was shortened compared to the SOC group; the cost of hospitalization was decreased. ConclusionsEarly suPAR-guided anakinra treatment is associated with decrease of the risk for SRF and restoration of the pro- /anti-inflammatory balance. Trial RegistrationClinicalTrials.gov, NCT04357366

3.
Preprint in English | medRxiv | ID: ppmedrxiv-20131029

ABSTRACT

Emerging data indicate that complement and neutrophils are involved in the maladaptive host immune response that fuels hyper-inflammation and thrombotic microangiopathy increasing the mortality rate in coronavirus disease 2019 (COVID-19). Here, we investigated the interaction between complement and the platelet/neutrophil extracellular traps (NETs)/thrombin axis, using COVID-19 clinical samples, cell-based inhibition studies and NETs/human aortic endothelial cell (HAEC) co-cultures. Increased plasma levels of NETs, TF activity and sC5b-9 were detected in patients. Neutrophils yielded high tissue factor (TF) expression and released NETs carrying functionally active TF. Confirming our ex vivo findings, treatment of control neutrophils with COVID-19 platelet-rich plasma generated TF-bearing NETs that induced thrombotic activity of HAEC. Thrombin or NETosis inhibition or C5aR1 blockade attenuated platelet-mediated NET-driven thrombogenicity. Serum isolated from COVID-19 patients induces complement activation in vitro, which is consistent with high complement activity in clinical samples. Complement inhibition at the level of C3 with compstatin Cp40 disrupted TF expression in neutrophils. In conclusion, we provide a mechanistic basis that reveals the pivotal role of complement and NETs in COVID-19 immmunothrombosis. This study supports emerging strategies against SARS-CoV-2 infection that exploit complement therapeutics or NETosis inhibition.

4.
J Acquir Immune Defic Syndr ; 82(3): 314-320, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31609929

ABSTRACT

BACKGROUND: For people living with HIV, major guidelines in high-income countries recommend testing for transmitted drug resistance (TDR) to guide the choice of first-line antiretroviral therapy (ART). However, individuals who fail a first-line regimen can now be switched to one of several effective regimens. Therefore, the virological and clinical benefit of TDR testing needs to be evaluated. METHODS: We included individuals from the HIV-CAUSAL Collaboration who enrolled <6 months of HIV diagnosis between 2006 and 2015, were ART-naive, and had measured CD4 count and HIV-RNA. Follow-up started at the date when all inclusion criteria were first met (baseline). We compared 2 strategies: (1) TDR testing within 3 months of baseline versus (2) no TDR testing. We used inverse probability weighting to estimate the 5-year proportion and hazard ratios (HRs) of virological suppression (confirmed HIV-RNA <50 copies/mL), and of AIDS or death under both strategies. RESULTS: Of 25,672 eligible individuals (82% males, 52% diagnosed in 2010 or later), 17,189 (67%) were tested for TDR within 3 months of baseline. Of these, 6% had intermediate- or high-level TDR to any antiretroviral drug. The estimated 5-year proportion virologically suppressed was 77% under TDR testing and 74% under no TDR testing; HR 1.06 (95% confidence interval: 1.03 to 1.19). The estimated 5-year risk of AIDS or death was 6% under both strategies; HR 1.03 (95% confidence interval: 0.95 to 1.12). CONCLUSIONS: TDR prevalence was low. Although TDR testing improved virological response, we found no evidence that it reduced the incidence of AIDS or death in first 5 years after diagnosis.


Subject(s)
Anti-Retroviral Agents/therapeutic use , Drug Resistance, Viral/drug effects , HIV Infections/drug therapy , HIV Infections/transmission , Adult , Anti-HIV Agents/therapeutic use , CD4 Lymphocyte Count , Drug Therapy, Combination , Female , HIV Infections/virology , HIV-1/drug effects , Humans , Male , Middle Aged
5.
AIDS ; 32(3): 327-335, 2018 01 28.
Article in English | MEDLINE | ID: mdl-29135583

ABSTRACT

OBJECTIVE: We estimated and compared the risk of clinically identified acquired drug resistance under immediate initiation [the currently recommended antiretroviral therapy (ART) initiation strategy], initiation with CD4 cell count less than 500 cells/µl and initiation with CD4 cell count less than 350 cells/µl. DESIGN: Cohort study based on routinely collected data from the HIV-CAUSAL collaboration. METHODS: For each individual, baseline was the earliest time when all eligibility criteria (ART-naive, AIDS free, and others) were met after 1999. Acquired drug resistance was defined using the Stanford classification as resistance to any antiretroviral drug that was clinically identified at least 6 months after ART initiation. We used the parametric g-formula to adjust for time-varying (CD4 cell count, HIV RNA, AIDS, ART regimen, and drug resistance testing) and baseline (calendar period, mode of acquisition, sex, age, geographical origin, ethnicity and cohort) characteristics. RESULTS: In 50 981 eligible individuals, 10% had CD4 cell count more than 500 cells/µl at baseline, and 63% initiated ART during follow-up. Of 2672 tests for acquired drug resistance, 794 found resistance. The estimated 7-year risk (95% confidence interval) of acquired drug resistance was 3.2% (2.8,3.5) for immediate initiation, 3.1% (2.7,3.3) for initiation with CD4 cell count less than 500 cells/µl, and 2.8% (2.5,3.0) for initiation with CD4 cell count less than 350 cells/µl. In analyses restricted to individuals with baseline in 2005-2015, the corresponding estimates were 1.9% (1.8, 2.5), 1.9% (1.7, 2.4), and 1.8% (1.7, 2.2). CONCLUSION: Our findings suggest that the risk of acquired drug resistance is very low, especially in recent calendar periods, and that immediate ART initiation only slightly increases the risk. It is unlikely that drug resistance will jeopardize the proven benefits of immediate ART initiation.


Subject(s)
Anti-Retroviral Agents/administration & dosage , Anti-Retroviral Agents/pharmacology , Drug Resistance, Viral , HIV Infections/drug therapy , Adult , Aged , CD4 Lymphocyte Count , Female , Genotype , Genotyping Techniques , HIV/genetics , HIV/isolation & purification , Humans , Male , Middle Aged , Prospective Studies , Risk Assessment , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...