Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Antimicrob Agents Chemother ; : e0019024, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016594

ABSTRACT

According to the World Health Organization, the number of tuberculosis (TB) infections and the drug-resistant burden worldwide increased by 4.5% and 3.0%, respectively, between 2020 and 2021. Disease severity and complexity drive the interest for undertaking new clinical trials to provide efficient treatment to limit spread and drug resistance. TB Alliance conducted a phase 2 study in 106 patients to guide linezolid (LZD) dose selection using early bactericidal activity over 14 days of treatment. LZD is highly efficient for drug-resistant TB treatment, but treatment monitoring is required since serious adverse events can occur. The objective of this study was to develop a pharmacokinetic-pharmacodynamic (PKPD) model to analyze the dose-response relationship between linezolid exposure and efficacy biomarkers. Using time to positivity (TTP) and colony-forming unit (CFU) count data, we developed a PKPD model in six dosing regimens, differing on LZD dosing intensity. A one-compartment model with five transit absorption compartments and non-linear auto-inhibition elimination described best LZD pharmacokinetic characteristics. TTP and CFU logarithmic scaled [log(CFU)] showed a bactericidal activity of LZD against Mycobacterium tuberculosis. TTP was defined by a model with two significant covariates: the presence of uni- and bilateral cavities decreased baseline TTP value by 24%, and an increase on every 500 mg/L/h of cumulative area under the curve increased the rate at which TTP and CFU change from baseline by 20% and 11%, respectively. CLINICAL TRIALS: This study is registered with ClinicalTrials.gov as NCT02279875.

2.
Toxicol Appl Pharmacol ; 414: 115424, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33524444

ABSTRACT

For the determination of acute toxicity of chemicals in zebrafish (Danio rerio) embryos, the OECD test guideline 236, relative to the Fish Embryo Toxicity Test (FET), stipulates a dose-response analysis of four lethal core endpoints and a quantitative characterization of abnormalities including their time-dependency. Routinely, the data are analyzed at the different observation times separately. However, observations at a given time strongly depend on the previous effects and should be analyzed jointly with them. To solve this problem, we developed multistate models for occurrence of developmental malformations and live events in zebrafish embryos exposed to eight concentrations of valproic acid (VPA) the first five days of life. Observations were recorded daily per embryo. We statistically infer on model structure and parameters using a numerical Bayesian framework. Hatching probability rate changed with time and we compared five forms of its time-dependence; a constant rate, a piecewise constant rate with a fixed hatching time at 48 h post fertilization, a piecewise constant rate with a variable hatching time, as well as a Hill and Gaussian form. A piecewise constant function of time adequately described the hatching data. The other transition rates were conditioned on the embryo body concentration of VPA, obtained using a physiologically-based pharmacokinetic model. VPA impacted mostly the malformation probability rate in hatched and non-hatched embryos. Malformation reversion probability rates were lowered by VPA. Direct mortality was low at the concentrations tested, but increased linearly with internal concentration. The model makes full use of data and gives a finer grain analysis of the teratogenic effects of VPA in zebrafish than the OECD-prescribed approach. We discuss the use of the model for obtaining toxicological reference values suitable for inter-species extrapolation. A general result is that complex multistate models can be efficiently evaluated numerically.


Subject(s)
Abnormalities, Drug-Induced/etiology , Models, Biological , Teratogens/toxicity , Toxicity Tests, Acute , Valproic Acid/toxicity , Abnormalities, Drug-Induced/embryology , Animals , Bayes Theorem , Computer Simulation , Dose-Response Relationship, Drug , Embryo, Nonmammalian/abnormalities , Embryo, Nonmammalian/drug effects , Numerical Analysis, Computer-Assisted , Teratogens/pharmacokinetics , Toxicokinetics , Valproic Acid/pharmacokinetics , Zebrafish/embryology
4.
Reprod Toxicol ; 93: 219-229, 2020 04.
Article in English | MEDLINE | ID: mdl-32114065

ABSTRACT

In order to better explain, predict, or extrapolate to humans the developmental toxicity effects of chemicals to zebrafish (Danio rerio) embryos, we developed a physiologically-based pharmacokinetic (PBPK) model designed to predict organ concentrations of neutral or ionizable chemicals, up to 120 h post-fertilization. Chemicals' distribution is modeled in the cells, lysosomes, and mitochondria of ten organs of the embryo. The model's partition coefficients are calculated with sub-models using physicochemical properties of the chemicals of interest. The model accounts for organ growth and changes in metabolic clearance with time. We compared ab initio model predictions to data obtained on culture medium and embryo concentrations of valproic acid (VPA) and nine analogs during continuous dosing under the OECD test guideline 236. We further improved the predictions by estimating metabolic clearance and partition coefficients from the data by Bayesian calibration. We also assessed the performance of the model at reproducing data published by Brox et al. (2016) on VPA and 16 other chemicals. We finally compared dose-response relationships calculated for mortality and malformations on the basis of predicted whole embryo concentrations versus those based on nominal water concentrations. The use of target organ concentrations substantially shifted the magnitude of dose-response parameters and the relative toxicity ranking of chemicals studied.


Subject(s)
Anticonvulsants/pharmacokinetics , Embryo, Nonmammalian/metabolism , Models, Biological , Valproic Acid/analogs & derivatives , Valproic Acid/pharmacokinetics , Zebrafish/metabolism , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...