Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(10): e31157, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813145

ABSTRACT

Despite the polluting potential olive mill wastewater (OMW) can be a useful source of nutrients and organic compounds to improve soil properties. The aim of this paper was to verify if biochar-based treatment of OMW could be an efficient method to contrast the richness in phenolic compounds and phytotoxicity of OMW making it more suitable. for soil amendment. In this study poplar biochar (BP) was more effective than conifer biochar (BC) in terms of adsorbing phenols and reducing phytotoxicity at different biochar rates (5 and 10 %). In soil amendment BP-treated OMW induced an increase of organic carbon by approximately 15 % and notably BP10 treated OMW enhanced available phosphorous by 25 % after 30 days of incubation. In soil amended with 10 % BP-treated OMW microbial biomass and enzymatic activities were significantly enhanced after 30 and 90 days, with no effect on cress seed germination. Therefore, biochar based-treatment could be cost-effective and able to facilitate the long-term management of OMW in terms of storage and disposal.

2.
Phytopathology ; : PHYTO10230362R, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38079350

ABSTRACT

The genus Coguvirus, a recently established genus in the family Phenuiviridae, includes several species whose members infect both woody and herbaceous hosts, suggesting a broader host range and wider distribution than previously. To gain insights into the epidemiology and biology of coguviruses, a polyvalent reverse transcription-PCR assay using degenerate primers was developed. The specificity of the assay for coguviruses was confirmed by testing citrus and apple plants infected by previously reported coguviruses and/or several unrelated viruses. The expected 236-bp amplicon was obtained from citrus, apple, pear, watermelon, and several species of the family Brassicaceae. Sequencing of the PCR amplicons allowed the identification, for the first time in Italy and/or Europe, of several coguviruses in multiple hosts, confirming the effectiveness of the assay. Moreover, a new virus, tentatively named Brassica oleracea Torzella virus 1 (BoTV1), was detected in several plants of Torzella cabbage. The complete +genome of BoTV1, determined by high-throughput sequencing and 5' rapid amplification of cDNA ends, revealed that it has the typical molecular features of coguviruses and fulfils the current criteria to be classified as a member of a new species, for which the tentative name Coguvirus torzellae is proposed. The same polyvalent assay was also used to investigate and confirm that BoTV1 is transmitted through seeds in black cabbage, thus providing the first evidence on the relevance of this natural transmission mode in the epidemiology of coguviruses. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.

3.
Heliyon ; 9(12): e22894, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38125515

ABSTRACT

Olive mill wastewater (OMW) is the effluent derived from the oil extraction processes from olives. Despite the polluting potential OMW can be a useful source of nutrients and organic compounds to improve soil properties. OMW could negatively affect soil and water quality as this waste is rich in phenolic compounds and has high COD and BOD5. Biochar-based treatment could be an efficient method to remediate OMW. In this study poplar biochar (BP) was more effective than conifer biochar (BC) in terms of adsorbing phenols and reducing phytotoxicity at different biochar rates (5 and 10 %). BP-treated OMW was used in soil amendment and induced an increase in chemical properties, especially in organic carbon after 30 days of incubation. In soil amended with 10 % BP-treated OMW microbial biomass, enzymatic activities, and cress seed germination were significantly enhanced after 30 and 90 days.

4.
Int J Phytoremediation ; 25(11): 1474-1487, 2023.
Article in English | MEDLINE | ID: mdl-36606367

ABSTRACT

The aim of this study was the comparison of two process in pentachlorophenol (PCP: 100 mg L-1) removal by combined process bioaugmentation-adsorption and bioaugmentation-phytoremediation in secondary treated wastewater (STWW). The phytoremediation procedure was conducted by using two plants such as Typha angustifolia and Schoenoplectus acutus, and the bioaugmentation procedure was operated by Pseudomonas putida HM 627618 as a plant growth promoting bacteria (PGPR). The adsorption process was performed by palm date activated carbon. The PCP monitoring was assessed by high performance liquid chromatography (HPLC) and the optical density determination at 600 nm (OD600). The performance of the two processes was observed by the determination of total bacteria, chlorophylls and physical and chemical analysis (COD, pH, conductivity, chloride, and organic carbon). The alfalfa seed germination test was conducted to assess the two operational performance procedures. According to the results obtained from the physical and chemical analysis of the treated STWW, there was no significant differences in the pH and in the EC content of the bioaugmentation-phytoremediation treatment, while a significant increase of the EC content was observed in the bioaugmentation-adsorption to 5.08 mS cm-1. The COD value significantly decreased up to 1320 mg L-1 in bioaugmentation-adsorption treatment (control value 2400 mg L-1) and 98 mg L-1 in bioaugmentation-phytoremediation treatment (control value 98 mg L-1). Microbial biomass monitoring of P. putida shows significant greater in both processes in the order of 9.18 and 7.01 Log CFU mL-1 for bioaugmentation-adsorption and bioaugmentation-phytoremediation, respectively. The chlorophyll content in Typha angustifolia and Schoenoplectus acutus significantly decreased after 144 h with the exception of the chlorophyll a content of Schoenoplectus acutus in which the content increased up to 3.31 mg mL-1. Comparing the performance of these two treatments, it was found according to HPLC analysis that the bioaugmentation-adsorption process was more efficient in removing about 97% of PCP after 48 h, against around 90% of PCP after 72 h for the phytoremediation-bioaugmentation. The alfalfa seeds showed a germination rate after the 5th day of incubation of 100% and 95%, respectively for the PCP-non-contaminated and treated STWW, while for wastewater containing PCP the germination was totally inhibited.


This paper describing sensitive methods of combined bioaugmentation-phytoremediation and bioaugmentation-adsorption for pentachlorophenol (PCP) depletion in wastewater. The novelty is the choice of a macrophyte Typha angustifolia and Schoenoplectus acutus in constructed wetland fixed in clay matrix. The two-selected plants are still used for the elimination of heavy metals but not for pesticide in wastewater. Also, the combined process bioaugmentation-adsorption was not tested in other researches. On the other side, in this study, the phytoremediation technique combined with bacteria positively affected the plants activity in order to promote pollutant remediation. Hence, the Pseudomonas putida HM 627618 in wastewater with the macrophyte presence or date stone adsorbent have a great capacity to reduce this pollutant (PCP) by improving the bioremediation process.


Subject(s)
Pesticides , Wastewater , Biodegradation, Environmental , Adsorption , Chlorophyll A
5.
Plants (Basel) ; 11(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36501382

ABSTRACT

To make feasible the crewed missions to the Moon or Mars, space research is focusing on the development of bioregenerative life support systems (BLSS) designed to produce food crops based on in situ resource utilisation (ISRU), allowing to reduce terrestrial input and to recycle organic wastes. In this regard, a major question concerns the suitability of native regoliths for plant growth and how their agronomic performance is affected by additions of organic matter from crew waste. We tested plant growth substrates consisting of MMS-1 (Mars) or LHS-1 (Lunar) simulants mixed with a commercial horse/swine monogastric manure (i.e., an analogue of crew excreta and crop residues) at varying rates (100:0, 90:10, 70:30, 50:50, w/w). Specifically, we measured: (i) lettuce (Lactuca sativa L. cultivar 'Grand Rapids') growth (at 30 days in open gas exchange climate chamber with no fertilisation), plant physiology, and nutrient uptake; as well as (ii) microbial biomass C and N, enzymatic activity, and nutrient bioavailability in the simulant/manure mixtures after plant growth. We discussed mechanisms of different plant yield, architecture, and physiology as a function of chemical, physico-hydraulic, and biological properties of different substrates. A better agronomic performance, in terms of plant growth and optically measured chlorophyll content, nutrient availability, and enzymatic activity, was provided by substrates containing MMS-1, in comparison to LHS-1-based ones, despite a lower volume of readily available water (likely due to the high-frequency low-volume irrigation strategy applied in our experiment and foreseen in space settings). Other physical and chemical properties, along with a different bioavailability of essential nutrients for plants and rhizosphere biota, alkalinity, and release of promptly bioavailable Na from substrates, were identified as the factors leading to the better ranking of MMS-1 in plant above and below-ground mass and physiology. Pure Mars (MMS-1) and Lunar (LHS-1) simulants were able to sustain plant growth even in absence of fertilisation, but the amendment with the monogastric manure significantly improved above- and below-ground plant biomass; moreover, the maximum lettuce leaf production, across combinations of simulants and amendment rates, was obtained in treatments resulting in a finer root system. Increasing rates of monogastric manure stimulated the growth of microbial biomass and enzymatic activities, such as dehydrogenase and alkaline phosphomonoesterase, which, in turn, fostered nutrient bioavailability. Consequently, nutrient uptake and translocation into lettuce leaves were enhanced with manure supply, with positive outcomes in the nutritional value of edible biomass for space crews. The best crop growth response was achieved with the 70:30 simulant/manure mixture due to good availability of nutrients and water compared to low amendment rates, and better-saturated hydraulic conductivity compared to high organic matter application. A 70:30 simulant/manure mixture is also a more sustainable option than a 50:50 mixture for a BLSS developed on ISRU strategy. Matching crop growth performance and (bio)chemical, mineralogical, and physico-hydraulic characteristics of possible plant growth media for space farming allows a better understanding of the processes and dynamics occurring in the experimental substrate/plant system, potentially suitable for an extra-terrestrial BLSS.

6.
Int J Phytoremediation ; 24(3): 271-282, 2022.
Article in English | MEDLINE | ID: mdl-34121527

ABSTRACT

This study has contributed in the description of bioaugmentation-phytoremediation efficiency process using Typha angustifolia concerning PCP tolerance and removal from wastewater. Samples of wastewater were collected from industrial wastewater plants, namely row wastewater effluent "E.WW", primary wastewater "P.WW", secondary wastewater "S.WW", clarified wastewater "AC.WW". These effluents were spiked with PCP at different rate (100, 500, and 1000 mg.L-1), physical, chemical and biological properties were monitored. A second experiment was set up in order to check the efficiency of phytoremediation treatments of the different effluents artificially contaminated with 200 mg.L-1 PCP after 20 days lab scale experiment. An important PCP removal by indigenous bacteria was showed in S. WW with values from 1000 to 72.2 mg.L-1 from T0 (start of the experiment) to TF (end of the experiment), respectively. Phytoremediation process allowed a decrease of PCP rate from 200 to 6.4 mg.L-1, a decrease of chloride content from 14.0 to 4.0 mg.L-1 in S.WW samples was observed. Furthermore, a significant increase of bacterial number in S.WW and AC.WW to 1.700 × 106 and 1.450 × 106 CFU.mL-1, respectively was observed. In addition, the DGGE analysis showed that after bioaugmentation-phytoremediation treatments, the highest species richness and relative abundance in wastewater effluent was observed. Novelty statement Pentachlorophenol (PCP) is one of highly toxic of polychlorophenols and required to continuously monitor in environment. This paper presenting a sensitive method phytoremediation and bioaugmentation for PCP biotransformation in wastewater. The novelty is the choice of a macrophyte Typha angustifolia, which is still used for the elimination of heavy metals but it not used for pesticide and pollutant removal in wastewater. Also, there are different analysis that was performed in order to check phyto-technique process (DGGE and HPLC). On the other side, in this study, the phyto-techniques with Typha angustifolia positively affected intrinsic microorganisms in order to promote pollutant remediation. So, the intrinsic microorganisms in wastewater with the macrophyte presence have a great capacity to reduce this pollutant and improve the bioremediation process.


Subject(s)
Metals, Heavy , Pentachlorophenol , Typhaceae , Biodegradation, Environmental , Wastewater
7.
Med Princ Pract ; 31(1): 54-58, 2022.
Article in English | MEDLINE | ID: mdl-34753134

ABSTRACT

OBJECTIVE: The recent outbreak of COVID-19 limited the resources of the National Health System necessitating the formulation of novel practice recommendations for oncological care. To date, management guidelines for cancer patients in case of pandemic are not available. Each center tried to manage its own needs and requests independently, often reducing access to treatment and diagnostic exams to patients. Here, we have described the management of cancer patients during COVID-19 infection with suggestions of some practical approaches applied by our Regional Center for Oncological Orientation (COrO) in S.G. Moscati Hospital (Taranto, Italy). SUBJECTS AND METHODS: Our strategy was to minimize any interruption of cancer treatment through the extension of Taranto's Health Regional (COrO). The extension of the oncological network, assisted by the General Management of Taranto ASL through agreements with private structures in Taranto's area, allowed cancer patients to receive up to 11 different types of services, according to their needs (first investigation or follow-up), and represents an exclusive organization on the entire Italian territory. RESULTS: Thanks to the organization of the COrO in 2020, 1,406 first oncological visits and 566 preparatory treatments were carried out, 372 of exemption for oncological pathology (free health care) were activated, and 1,742 instrumental investigations and 7 cases of civil invalidity were performed (certificate of disability). CONCLUSIONS: We have overcome barriers to care of oncology patients leading to a reduction of waiting lists representing a practical application model that can be extended to other healthcare settings.


Subject(s)
COVID-19/prevention & control , Health Services Accessibility/organization & administration , Infection Control/organization & administration , Medical Oncology/statistics & numerical data , Neoplasms/therapy , COVID-19/epidemiology , Continuity of Patient Care , Disease Outbreaks , Hospitals , Humans , Infection Control/methods , Italy , Medical Oncology/organization & administration , Pandemics
8.
Chemosphere ; 290: 133359, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34933026

ABSTRACT

Pentachlorophenol (PCP) is quite persistent in the environment and severely affects different ecosystems including forest soil. The main objective of this work was to study different bioremediation processes of artificially PCP (100 mg kg-1) contaminated forest soil (Sc). In fact, we used bioaugmentation by adding two different bacterial consortia B1 and B2, biostimulation procedures by amendments based on forest compost (FC), municipal solid waste compost (MC), sewage sludge (SS), and phosphate, and their combined treatments. Soil physical and chemical properties, residual PCP, soil microbial biomass carbon, soil respiration and some enzymatic activities at zero time and after 30 d of incubation, were evaluated. A net reduction of PCP, 71% of the initial concentration, after 30 d-incubation occurred in the sample Sc+B1+FC, as the best performance among all treatments, due to natural attenuation, immobilization of PCP molecules in the forest soil through organic amendments, and the action of the exogenous microbial consortium B1. The single application of FC or B1 led to a depletion of PCP concentration of 52% and 41%, respectively. Soil microbial biomass carbon decreased in PCP contaminated soil but it increased when organic amendment also in combination with microbial consortia was carried out as bioremediation action. Soil respiration underwent no changes in contaminated soil and increased under FC based bioremediation treatment. These results demonstrate that the combined treatments of biostimulation and bioaugmentation might be a promising process for remediation of PCP contaminated soil.


Subject(s)
Pentachlorophenol , Soil Pollutants , Biodegradation, Environmental , Ecosystem , Forests , Soil , Soil Microbiology , Soil Pollutants/analysis
9.
Arch Microbiol ; 203(10): 6231-6243, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34591145

ABSTRACT

The aims of this study were (i) to compare PCP removal (100 mg L-1) by two bacterial consortia B1 and B2 in sterile wastewater (STWW) and liquid mineral medium (MSM), (ii) PCP effect in biofilm formation and antimicrobial susceptibility. PCP removal was measured by high-performance liquid chromatography (HPLC) during 168 h at 30 °C. Biofilm formation was assessed with two approaches: Congo Red Agar and Microtiter-plate. Antimicrobial susceptibility was determined by the agar disc diffusion technique. The results showed that the PCP removal for consortium B1 and B2 after 168 h was 70 and 97.5% in STWW; 62.2 and 85.5% in MSM, respectively. In addition, PCP addition showed an increase in biofilm development especially for B2 consortium around 3.5 nm in 100 mg L-1 PCP. PCP added in the Muller Hinton (MH) medium and Gentamicin disc showed a clear increase in diameter of cell lysis around 2 to 4.5 cm.


Subject(s)
Pentachlorophenol , Bacteria , Biodegradation, Environmental , Biotransformation , Wastewater
10.
J Agric Food Chem ; 68(35): 9461-9474, 2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32809829

ABSTRACT

Digestates, a byproduct of the anaerobic bioconversion of organic wastes for the production of biogas, are highly variable in chemical and biological properties, thus limiting their potential use in agriculture as soil amendment. Using a lab-scale glass reactor, we aimed to assess the feasibility to chemically stabilize the solid fraction of an anaerobic digestate by applying a Fenton reaction under constant pH (3.0), temperature (70 °C), reaction time (8 h), and various combinations of H2O2 and Fe2+. In Fenton-treated samples, the phytotoxic potential (determined on a test plant), total phenols, and the bad smell odor index markedly declined, whereas total C and N remained unaltered. Thermogravimetric (TG) analysis and Fourier transform infrared (FT-IR) spectroscopy revealed contrasting changes in extracted humic and fulvic fractions being increased or depleted, respectively, in aromatic substances. Process feasibility and optimum conditions for an effective biomass stabilization were achieved with a H2O2/Fe2+ ratio between 0.02 and 0.03.


Subject(s)
Humic Substances/analysis , Hydrogen Peroxide/chemistry , Iron/chemistry , Soil/chemistry , Anaerobiosis , Benzopyrans/analysis , Biomass , Hydrogen-Ion Concentration
11.
J Sci Food Agric ; 100(1): 193-200, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31502246

ABSTRACT

BACKGROUND: Lemon processing procedures yield a significant amount of waste as peels, which are 57% of processed lemons and represent a possible source of bioactive compounds (essential oils, EOs). EOs were extracted from lemon fruits belonging to four cultivars harvested at four different sampling times (25 October, 23 November, 20 December, 1 February), characterized, and quantified through gas chromatography-mass spectrometry. RESULTS: The chemical composition of EOs highlighted that 26 compounds of the four lemon cultivars at the different ripening stages were clearly identified. The compounds analysed belonged to four chemical classes: monoterpene hydrocarbons, oxygenated monoterpenes, sesquiterpenes, and fatty alcohol esters. Among the monoterpene hydrocarbons, d-limonene, ß-pinene, and γ-terpinene were the most abundant; and among the oxygenated monoterpenes, α-terpineol, nerol, and geraniol were the most abundant. Quantitative gas chromatography-mass spectrometry analysis of the most abundant monoterpene hydrocarbons (α-pinene, ß-pinene, myrcene, d-limonene, and γ-terpinene) highlighted that the amount of EOs decreased during ripening stages. 'Ovale di Sorrento' and 'Sfusato Amalfitano' showed the highest level of EOs in December, whereas in 'Femminello Cerza' and 'Femminello Adamo' this occurred in November. EOs, as well as the phenolic compounds, were positively correlated with the antioxidant activity (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid). CONCLUSIONS: EOs reached the highest level in the four lemon cultivars at different ripening stages. Campanian cultivars ('Ovale di Sorrento' and 'Sfusato Amalfitano') showed the greatest EO content in November, whereas in Sicilian cultivars ('Femminello Cerza' and 'Femminello Adamo') this occurred in December. Besides phenolic compounds, measured in lemon peel extracts, EOs can contribute to antioxidant activity, as demonstrated by the positive correlation. © 2019 Society of Chemical Industry.


Subject(s)
Citrus/growth & development , Fruit/chemistry , Oils, Volatile/chemistry , Plant Oils/chemistry , Bicyclic Monoterpenes/analysis , Citrus/chemistry , Cyclohexane Monoterpenes/analysis , Fruit/growth & development , Sesquiterpenes/analysis
12.
Cell Death Dis ; 9(2): 206, 2018 02 12.
Article in English | MEDLINE | ID: mdl-29434186

ABSTRACT

Preconditioning (PC) is a phenomenon wherein a mild insult induces resistance to a later, severe injury. Although PC has been extensively studied in several neurological disorders, no studies have been performed in amyotrophic lateral sclerosis (ALS). Here we hypothesize that a sub-toxic acute exposure to the cycad neurotoxin beta-methylamino-L-alanine (L-BMAA) is able to delay ALS progression in SOD1 G93A mice and that NCX3, a membrane transporter able to handle the deregulation of ionic homeostasis occurring during ALS, takes part to this neuroprotective effect. Preconditioning effect was examined on disease onset and duration, motor functions, and motor neurons in terms of functional declines and severity of histological damage in male and female mice. Our findings demonstrate that a sub-toxic dose of L-BMAA works as preconditioning stimulus and is able to delay ALS onset and to prolong ALS mice survival. Interestingly, preconditioning prevented NCX3 downregulation in SOD1 G93A mice spinal cord, leading to an increased number of motor neurons associated to a reduced astrogliosis, and reduced the denervation of neuromuscular junctions observed in SOD1 G93A mice. These protective effects were mitigated in ncx3+/- mice. This study established for the first time an animal model of preconditioning in ALS and candidates NCX3 as a new therapeutic target.


Subject(s)
Amino Acids, Diamino/pharmacology , Amyotrophic Lateral Sclerosis/metabolism , Down-Regulation/drug effects , Neurotoxins/pharmacology , Sodium-Calcium Exchanger/biosynthesis , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/therapy , Animals , Cyanobacteria Toxins , Mice , Mice, Transgenic , Sodium-Calcium Exchanger/genetics , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism
13.
Chemosphere ; 186: 193-201, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28778017

ABSTRACT

Phenanthrene (Phe) and pentachlorophenol (PCP) are classified as persistent organic pollutants and represent serious concern for the environment as they are toxic and ubiquitous. Biochar based remediation is an emerging technology used in water and soil contamination. In this study we used poplar (BP) and conifer (BC) biochars to remediate water and soil contaminated by Phe and PCP. BP and BC were able to remove completely either Phe or PCP from contaminated water within one to three days. When biochar was confined in a porous membrane, BC and BP maintained their sorption efficiency for several remediation cycles. However, in these conditions BC allowed faster Phe removal. In soil remediation experiments, addition of two biochar rates, i.e. 2.5 and 5 mg g-1, strongly reduced Phe extractability (up to 2.7% of the initially added Phe with the larger BC dose). This was similar to the behavior observed when compost was applied in order to verify the role of soil organic matter in the fate of both contaminants. PCP extractability was reduced only up to 75% (in average) in all samples including those with compost amendment. Only larger amount of biochar (20 and 50 mg g-1) allowed reduction of the extractable PCP and nullified phytotoxicity of the contaminant.


Subject(s)
Charcoal/chemistry , Environmental Restoration and Remediation , Pentachlorophenol/chemistry , Phenanthrenes/chemistry , Environment , Environmental Pollution , Pentachlorophenol/analysis , Phenanthrenes/analysis , Soil/chemistry , Soil Pollutants/analysis , Soil Pollutants/chemistry , Water/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry
14.
Eur J Public Health ; 15(4): 411-7, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15975954

ABSTRACT

BACKGROUND: The relationship between income inequality and health remains controversial in terms of whether or not it exists and, if so, its extent and the mechanisms involved. This study examines the relationship between income inequality, as indicated by the Gini coefficient, and mortality in Italy. METHODS: Cross-sectional ecological study on the 57,138,489 inhabitants living in the 95 provinces existing in Italy in 1994. Multivariate weighted regression analysis of total and age-specific mortality, income inequality, gender, and interaction between income inequality and median income or geographical area. RESULTS: A positive association between income inequality and total mortality was observed for both genders in provinces with a low per capita income and in Southern and Central Italy. The effect was present for infants and for persons over 24 years of age; it was marked for the elderly, particularly women. A negative association with mortality was observed for males living in the North-west. Interactions between income inequality and median income, and between income inequality and geographical area were found. CONCLUSION: In Italy, the relationship between income inequality and health is mixed and not universal, in so far as a positive association was observed only in provinces with lower absolute income. Elderly persons living in Southern Italy represent the population subgroup most vulnerable to unequal income distribution. Income inequality can, in part, explain the historically higher mortality among women in Southern Italy compared to women in the North. These results indicate that income inequality affects the health of population subgroups differentially.


Subject(s)
Income/statistics & numerical data , Mortality , Adolescent , Adult , Aged , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Infant , Infant, Newborn , Italy/epidemiology , Male , Middle Aged , Poverty/statistics & numerical data , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...