Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Syst Appl Microbiol ; 43(1): 126024, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31708159

ABSTRACT

Conventional anaerobic digesters intended for the production of biogas usually operate in complete darkness. Therefore, little is known about the effect of light on their microbial communities. In the present work, 16S rRNA gene amplicon Nanopore sequencing and shotgun metagenomic sequencing were used to study the taxonomic and functional structure of the microbial community forming a biofilm on the inner wall of a laboratory-scale transparent anaerobic biodigester illuminated with natural sunlight. The biofilm was composed of microorganisms involved in the four metabolic processes needed for biogas production, and it was surprisingly rich in Rhodopseudomonas faecalis, a versatile bacterium able to carry out photoautotrophic metabolism when grown under anaerobic conditions. The results suggested that this bacterium, which is able to fix carbon dioxide, could be considered for use in transparent biogas fermenters in order to contribute to the production of optimized biogas with a higher CH4:CO2 ratio than the biogas produced in regular, opaque digesters. To the best of our knowledge, this is the first study characterising the phototrophic biofilm associated with illuminated bioreactors.


Subject(s)
Biofilms , Biofuels/microbiology , Microbiota/physiology , Phototrophic Processes , Anaerobiosis , Archaea/classification , Archaea/genetics , Archaea/isolation & purification , Archaea/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Biofilms/growth & development , Bioreactors/microbiology , Metagenome , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sewage/microbiology
2.
Bioresour Technol ; 265: 275-281, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29906716

ABSTRACT

In this work, liquid and solid fractions of grass biomass were used as co-substrates for anaerobic co-digestion of sewage sludge. The input of grass biomass was increased gradually, and the underlying methanogenic microbiome was assessed by means of microscopy-based cell counting and full-length 16S rRNA gene high-throughput sequencing, proving for the first time the suitability of nanopore-based portable sequencers as a monitoring tool for anaerobic digestion systems. In both cases co-fermentation resulted in an increased number of bacteria and methanogenic archaea. Interestingly, the microbial communities were highly different between solid and liquid-fed batches. Liquid-fed batches developed a more stable microbiome, enriched in Methanosarcina spp., and resulted in higher methanogenic yield. In contrast, solid-fed batches were highly unstable at higher substrate concentrations, and kept Methanosaeta spp. - typically associated to sewage sludge - as the majoritary methanogenic archaea.


Subject(s)
Bioreactors , RNA, Ribosomal, 16S , Sewage , Anaerobiosis , Archaea , Biomass , Methane/biosynthesis , Poaceae
3.
Bioresour Technol ; 249: 1074-1079, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29146311

ABSTRACT

We report here the impact of heat-shock treatments (55 and 70 °C) on the biogas production within the acidification stage of a two-stage reactor system for anaerobic digestion and biomethanation of grass. The microbiome proved both taxonomically and functionally very robust, since heat shocks caused minor community shifts compared to the controls, and biogas yield was not decreased. The strongest impact on the microbial profile was observed with a combination of heat shock and low pH. Since no transient reduction of microbial diversity occured after the shock, biogas keyplayers, but also potential pathogens, survived the treatment. All along the experiment, the heat-resistant bacterial profile consisted mainly of Firmicutes, Bacteroidetes and Proteobacteria. Bacteroides and Acholeplasma were reduced after heat shocks. An increase was observed for Aminobacterium. Our results prove the stability to thermal stresses of the microbial communities involved in acidification, and the resilience in biogas production irrespectively of the thermal treatment.


Subject(s)
Biofuels , Bioreactors , Anaerobiosis , Bacteria , Microbiota
4.
Biotechnol Biofuels ; 10: 171, 2017.
Article in English | MEDLINE | ID: mdl-28690680

ABSTRACT

BACKGROUND: Separating acidification and methanogenic steps in anaerobic digestion processes can help to optimize the process and contribute to producing valuable sub-products such as methane, hydrogen and organic acids. However, the full potential of this technology has not been fully explored yet. To assess the underlying fermentation process in more detail, a combination of high-throughput sequencing and proteomics on the acidification step of plant material (grass) at both mesophilic and thermophilic temperatures (37 and 55 °C, respectively) was applied for the first time. RESULTS: High-strength liquor from acidified grass biomass exhibited a low biodiversity, which differed greatly depending on temperature. It was dominated by Bacteroidetes and Firmicutes at 37 °C, and by Firmicutes and Proteobacteria at 55 °C. At the methane stage, Methanosaeta, Methanomicrobium and Methanosarcina proved to be highly sensitive to environmental changes as their abundance in the seed sludges dropped dramatically after transferring the seed sludges from the respective reactors into the experimental setup. Further, an increase in Actinobacteria coincided with reduced biogas production at the end of the experiment. Over 1700 proteins were quantified from the first cycle of acidification samples using label-free quantitative proteome analysis and searching protein databases. The most abundant proteins included an almost complete set of glycolytic enzymes indicating that the microbial population is basically engaged in the degradation and catabolism of sugars. Differences in protein abundances clearly separated samples into two clusters corresponding to culture temperature. More differentially expressed proteins were found under mesophilic (120) than thermophilic (5) conditions. CONCLUSION: Our results are the first multi-omics characterisation of a two-stage biogas production system with separated acidification and suggest that screening approaches targeting specific taxa such as Methanosaeta, Methanomicrobium and Methanosarcina could be useful diagnostic tools as indicators of environmental changes such as temperature or oxidative stress or, as in the case of Actinobacteria, they could be used as a proxy of the gas production potential of anaerobic digesters. Metaproteome analyses only detected significant expression differences in mesophilic samples, whereas thermophilic samples showed more stable protein composition with an abundance of chaperones suggesting a role in protein stability under thermal stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...