Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Biochem ; 654: 114795, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35753389

ABSTRACT

Oxidative stress is a natural phenomenon in the body. Under physiological conditions intracellular reactive oxygen species (ROS) are normal components of signal transduction cascades, and their levels are maintained by a complex antioxidants systems participating in the in-vivo redox homeostasis. Increased oxidative stress is present in several chronic diseases and interferes with phagocytic and nervous cell functions, causing an up-regulation of cytokines and inflammation. Hepatic encephalopathy (HE) occurs in both acute liver failure (ALF) and chronic liver disease. Increased blood and brain ammonium has been considered as an important factor in pathogenesis of HE and has been associated with inflammation, neurotoxicity, and oxidative stress. The relationship between ROS and the pathophysiology of HE is still poorly understood. Therefore, sensing ROS production for a better understanding of the relationship between oxidative stress and functional outcome in HE pathophysiology is critical for determining the disease mechanisms, as well as to improve the management of patients. This review is emphasizing the important role of oxidative stress in HE development and documents the changes occurring as a consequence of oxidative stress augmentation based on cellular and ammonium-based animal models to human data.


Subject(s)
Ammonium Compounds , Hepatic Encephalopathy , Liver Diseases , Animals , Antioxidants/metabolism , Humans , Inflammation , Models, Animal , Oxidative Stress/physiology , Reactive Oxygen Species
3.
Free Radic Biol Med ; 178: 295-307, 2022 01.
Article in English | MEDLINE | ID: mdl-34890769

ABSTRACT

The role and coexistence of oxidative stress (OS) and inflammation in type C hepatic encephalopathy (C HE) is a subject of intense debate. Under normal conditions the physiological levels of intracellular reactive oxygen species are controlled by the counteracting antioxidant response to maintain redox homeostasis. Our previous in-vivo1H-MRS studies revealed the longitudinal impairment of the antioxidant system (ascorbate) in a bile-duct ligation (BDL) rat model of type C HE. Therefore, the aim of this work was to examine the course of central nervous system (CNS) OS and systemic OS, as well as to check for their co-existence with inflammation in the BDL rat model of type C HE. To this end, we implemented a multidisciplinary approach, including ex-vivo and in-vitro electron paramagnetic resonance spectroscopy (EPR) spin-trapping, which was combined with UV-Vis spectroscopy, and histological assessments. We hypothesized that OS and inflammation act synergistically in the pathophysiology of type C HE. Our findings point to an increased CNS- and systemic-OS and inflammation over the course of type C HE progression. In particular, an increase in the CNS OS was observed as early as 2-weeks post-BDL, while the systemic OS became significant at week 6 post-BDL. The CNS EPR measurements were further validated by a substantial accumulation of 8-Oxo-2'-deoxyguanosine (Oxo-8-dG), a marker of oxidative DNA/RNA modifications on immunohistochemistry (IHC). Using IHC, we also detected increased synthesis of antioxidants, glutathione peroxidase 1 (GPX-1) and superoxide dismutases (i.e.Cu/ZnSOD (SOD1) and MnSOD (SOD2)), along with proinflammatory cytokine interleukin-6 (IL-6) in the brains of BDL rats. The presence of systemic inflammation was observed already at 2-weeks post-surgery. Thus, these results suggest that CNS OS is an early event in type C HE rat model, which seems to precede systemic OS. Finally, our results suggest that the increase in CNS OS is due to enhanced formation of intra- and extra-cellular ROS rather than due to reduced antioxidant capacity, and that OS in parallel with inflammation plays a significant role in type C HE.


Subject(s)
Hepatic Encephalopathy , Animals , Bile Ducts , Brain , Disease Models, Animal , Hepatic Encephalopathy/etiology , Inflammation , Oxidative Stress , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...