Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Imaging Biol ; 25(3): 464-482, 2023 06.
Article in English | MEDLINE | ID: mdl-36517729

ABSTRACT

The tumor microenvironment (TME) play critical roles in tumor survival, progression, and metastasis and can be considered potential targets for molecular imaging of cancer. The targeting agents for imaging of TME components (e.g., fibroblasts, mesenchymal stromal cells, immune cells, extracellular matrix, blood vessels) provide a promising strategy to target these biomarkers for the early diagnosis of cancers. Moreover, various cancer types have similar tumor immune microenvironment (TIME) features that targeting those biomarkers and offer clinically translatable molecular imaging of cancers. In this review, we categorize and summarize the components in TME which have been targeted for molecular imaging. Moreover, this review updated the recent progress in targeted imaging of TIME biological molecules by various modalities for the early detection of cancer.


Subject(s)
Mesenchymal Stem Cells , Neoplasms , Humans , Tumor Microenvironment , Neoplasms/diagnosis , Neoplasms/pathology , Molecular Imaging , Mesenchymal Stem Cells/pathology , Fibroblasts
2.
J Drug Target ; 28(1): 92-101, 2020 01.
Article in English | MEDLINE | ID: mdl-31062625

ABSTRACT

Distinctive physicochemical features make mesoporous silica magnetic nanoparticles (SPION@SiO2) as a multifunctional nanosystem (NS) for the targeted delivery of therapeutic agents. In the present study, we engineered the mucin-1 (MUC-1) conjugated SPION@SiO2 (SPION@SiO2-MUC-1) for the targeted delivery of doxorubicin (DOX) to the breast cancer cells. Superparamagnetic iron oxide nanoparticles (SPIONs) were synthesised using thermal decomposition technique, and then, coated with mesoporous silica to modify their biocompatibility and reduce undesired cytotoxic effects. Subsequently, DOX was loaded onto the silica porous structures, which was then nanoparticles (NPs) grafted with 5'-amine-modified MUC-1 aptamers. Transmission electron microscopy and particle size analysis by differential light scattering exhibited spherical and monodisperse NPs with a size range of 5-27 nm. The FT-IR spectroscopy confirmed the surface modification of the engineered NS. The surface area and pore size of the SPION@SiO2-COOH NSs were calculated by BJH and BET calculations. The MTT assay revealed higher cytotoxicity of MUC-1 grafted SPION@SiO2 NSs in the MUC-1-positive MCF-7 cells as compared to the control MUC-1-negative MDA-MB-231 cells. The flow cytometry analysis of the SPION@SiO2-MUC-1 NSs revealed a higher uptake as compared to the non-targeted nanocomposite (NC) in MCF-7 cells. In conclusion, the engineered SPION@SiO2-MUC-1 NS is proposed to serve as an effective multifunctional targeted nanomedicine/theranostics against MUC-1 overexpressing cancer cells.


Subject(s)
Antineoplastic Agents/administration & dosage , Doxorubicin/administration & dosage , Magnetite Nanoparticles/chemistry , Mucin-1/chemistry , Silicon Dioxide/chemistry , Antineoplastic Agents/pharmacology , Cell Survival/drug effects , Doxorubicin/pharmacology , Drug Delivery Systems , Drug Liberation , Humans , MCF-7 Cells , Porosity , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...